article thumbnail

Study finds direct seawater splitting has substantial drawbacks to conventional water splitting, offers almost no advantage

Green Car Congress

A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage. Additionally, H 2 O is needed for water splitting.

Water 497
article thumbnail

California Energy Commission adopts offshore wind goals: 5GW by 2030, 25 GW by 2045

Green Car Congress

The California Energy Commission (CEC) adopted a report establishing offshore wind goals and moving the state one step closer to development of the clean energy resource off California’s coast. Additional transmission infrastructure will be needed to deliver offshore wind energy from this region to the grid.

Wind 435
article thumbnail

Gigastack renewable hydrogen from offshore wind project advances to next phase; 100MW electrolyzer system

Green Car Congress

The Gigastack project, led by ITM Power, Ørsted, Phillips 66 Limited and Element Energy, will show how renewable hydrogen derived from offshore wind can support the UK’s 2050 net-zero greenhouse gas emission target. from an offshore wind farm—the process of producing hydrogen from water (electrolysis) can be decarbonized.

Wind 379
article thumbnail

bp & Ørsted to produce green H2 at Lingen refinery; industrial-scale electrolyzer powered by offshore wind

Green Car Congress

project for industrial-scale production of green hydrogen via the electrolysis of water using ?renewable wind farm in the North Sea and the hydrogen produced will be used in the refinery.?. Electrolysis splits water into hydrogen and oxygen gases. renewable power, producing zero emissions. west Germany. operational by 2024.

Wind 418
article thumbnail

thyssenkrupp offering large-scale water electrolysis

Green Car Congress

thyssenkrupp recently introduced industrial-scale water electrolysis for large projects. By splitting water into hydrogen and oxygen, this technology delivers “green” hydrogen, a clean, CO 2 -free energy carrier. The only inputs needed are water and renewable electricity from wind, hydro power or photovoltaics.

Water 299
article thumbnail

Successful demonstration of FlexMethanol conversion of wind power to methanol

Green Car Congress

In Germany, BSE Engineering and the Institute for Renewable Energy Systems at Stralsund University of Applied Sciences (IRES) have demonstrated the conversion of wind power into renewable methanol. The team uses green electricity to split water into hydrogen and oxygen in an electrolysis step.

Wind 357
article thumbnail

thyssenkrupp’s water electrolysis technology qualified as primary control reserve in Germany; hydrogen production for the electricity market

Green Car Congress

thyssenkrupp’s proprietary water electrolysis technology for the production of. conducted the necessary tests jointly in an existing water electrolysis plant operating as part of the Carbon2Chem project ( earlier post ) in Duisburg. green hydrogen meets the requirements for participation in the primary control reserve market.

Water 337