article thumbnail

New stable water-splitting catalyst doesn’t require expensive iridium

Green Car Congress

Researchers have developed a nickel-stabilized, ruthenium dioxide (Ni-RuO 2 ) anode catalyst for proton exchange membrane (PEM) water electrolysis. The Ni-RuO 2 catalyst shows high activity and durability in acidic OER for PEM water electrolysis. Boyang Li of the University of Pittsburgh is co-lead author of the paper.

Water 411
article thumbnail

Stanford researchers make ammonia from air and water microdroplets

Green Car Congress

Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. —Song et al. Song et al.

Water 459
article thumbnail

Cambridge researchers develop standalone device that makes formic acid from sunlight, CO2 and water

Green Car Congress

Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.

Water 418
article thumbnail

Photocatalytic optical fibers convert water into hydrogen

Green Car Congress

Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Zepler Institute, University of Southampton. Computerized tomography of a MOFC, showing buildup of TiO 2 (light blue particles) in the triangular channels.

Water 371
article thumbnail

Novel inexpensive cobalt-nickel electrode for efficient water and urea electrolysis; yolk-shell nanoparticles

Green Car Congress

Both half reactions of water electrolysis—hydrogen and oxygen evolution—are unfortunately slow and require a lot of power. The material can be used as either an anode or a cathode, and demonstrates high activity and stability in the production of hydrogen and oxygen in the electrolysis of water. Zhang, S.L., and Lou, X.W.

Water 413
article thumbnail

China team develops highly active catalyst for hydrogen production from methanol-water

Green Car Congress

Methanol–water reforming could prove to be a promising solution for hydrogen production/transportation in stationary and mobile hydrogen applications. A team from Peking University and colleagues have now developed a nickel-supported over face-centered cubic (fcc) phase ? In addition, the synergy between Ni 1 –C x motif and ?-MoC

Ni-Li 382
article thumbnail

UT El Paso-led team designs cactus-inspired low-cost, efficient water-splitting catalyst

Green Car Congress

Researchers led by engineers at The University of Texas at El Paso (UTEP) have proposed a low-cost, cactus-inspired nickel-based material to help split water more cheaply and efficiently. Nickel, however, is not as quick and effective at breaking down water into hydrogen. who led the study. Every day, I passed this same plant.

El Paso 459