This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Solid-state sodium-ion batteries are safer than conventional lithium-ion batteries, which pose a risk of fire and explosions, but their performance has been too weak to offset the safety advantages. Researchers at the University of Houston have now developed an organic cathode that improves both stability and energy density.
A team led by researchers from the University of Alberta (Canada) Scientists has developed a hybrid sodium-ion capacitor (NIC) using active materials in both the anode and the cathode derived entirely from peanut shells—a green and highly economical waste globally generated at more than 6 million tons per year. Batteries'
Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9 100 to 150 mA h g ? 100 to 150 mA h g ?1
A team from the University of New South Wales (Australia) reports on a novel core-shell strategy leading to high and stable hydrogen absorption/desorption cycling for sodium borohydride (NaBH 4 ) under mild pressure conditions (4 MPa) in an open-access paper in the journal ACS Nano. Credit: ACS, Christian and Aguey-Zinsou.
The first international “Science Award Electrochemistry” from BASF and Volkswagen ( earlier post ) goes to Dr. Naoaki Yabuuchi, Tokyo University of Science, Institute for Science and Technology, Tokyo, Japan. Yabuuchi has showed, among other things, how new battery materials can improve the efficiency of lithium-ion and sodium-ion batteries.
The projects, led by universities, private companies, and national laboratories, were selected to develop technologies to advance UNF recycling, reduce the volume of high-level waste requiring permanent disposal, and provide safe domestic advanced reactor fuel stocks. Earlier post.) Award amount: $1,580,774). Award amount: $4,715,163).
In October 2008, Xcel began testing a one-megawatt sodium-sulfur (NaS) battery ( earlier post ) to demonstrate its ability to store wind energy and move it to the electricity grid when needed. They are able to store about 7.2 megawatt-hours of electricity, with a charge/discharge capacity of one megawatt.
Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.
Researchers at Empa and the University of Geneva (UNIGE) have developed a prototype of a novel solid-state sodium battery with the potential to store extra energy and with improved safety. The closo-borate sodium superionic conductor—Na 2 (B 12 H 12 ) 0.5 (B B 10 H 10 ) 0. —Duchêne et al. Duchêne et al.
Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C. Example of a lithium-water rechargeable battery.
The Advanced Research Projects Agency - Energy (ARPA-E) has awarded $3 million from its 2015 OPEN funding to a project to develop an all-solid-state sodium battery. A sodium-based battery, on the other hand, has the potential to store larger amounts of electrical energy at a significantly lower cost. Led by Steve W.
Natron Energy , a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has closed a strategic investment by Chevron Technology Ventures (CTV) to support the development of stationary energy storage systems for demand charge management at electric vehicle (EV) charging stations.
After years of anticipation, sodium-ion batteries are starting to deliver on their promise for energy storage. But so far, their commercialization is limited to large-scale uses such as storing energy on the grid. Sodium-ion batteries just don't have the oomph needed for EVs and laptops.
Researchers at Vanderbilt University have demonstrated that ultrafine sizes (∼4.5 nm, average) of iron pyrite (FeS 2 ) nanoparticles are advantageous to sustain reversible conversion reactions in sodium ion and lithium ion batteries. A paper on their work is published in the journal ACS Nano.
However, there still remain some major hurdles to the development of Ca-based batteries, one of them being a lack of knowledge on suitable cathode materials that can efficiently store and release Ca in a reversible manner. Haesun Park, Chung-Ang University, co-corresponding author. —Prof.
A team from Stanford University and Ruhr-Universität Bochum have demonstrated the novel concept of a “desalination battery” that uses an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. in seawater; step 4, exchange to new seawater. Credit: ACS, Pasta et al. Click to enlarge.
Natron Energy, a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has ( earlier post ), has been awarded a $3-million grant by the California Energy Commission (CEC) for “Advanced Energy Storage for Electric Vehicle Charging Support.”
Scientists at the University of New South Wales (Australia) have developed a new bio-inspired method for carrying out chemical reduction—an industrial process used to produce fuels and chemicals. A report on their work is published in the journal Angewandte Chemie.
The selected projects, led by universities, national laboratories, and the private sector aim to develop commercially scalable technologies that will enable greater domestic supplies of copper, nickel, lithium, cobalt, rare earth elements, and other critical elements. Columbia University. Harvard University.
Benson from Stanford University and Stanford’s Global Climate and Energy Project (GCEP) has quantified the energetic costs of 7 different grid-scale energy storage technologies over time. To quantify the long-term energetic costs, Barnhart and Benson came up with a new mathematical formula they dubbed ESOI, or energy stored on investment.
This latest round of ARPA-E projects seek to address the remaining challenges in energy storage technologies, which could revolutionize the way Americans store and use energy in electric vehicles, the grid and beyond, while also potentially improving the access to energy for the US. Utah State University. Pennsylvania State University.
The University of Michigan (U-M) and eight partner institutions will explore the use of ceramic ion conductors as replacements for the traditional liquid or polymer electrolytes in common lithium-ion batteries for electric vehicles and in flow cells for storing renewable energy in the grid.
E2TAC (Energy and Environmental Technology Applications Center) is located at the College of Nanoscale Science and Engineering (CNSE) of the University at Albany. of Greene to develop an electric forklift for use in freezer warehouses using GE’s Durathon sodium-halide batteries. Earlier post.) Urban Electric Power Inc.
The awards are being made to companies and universities across New York that are involved in advanced research and development of energy storage applications that could benefit transportation, utility Smart Grid applications, renewable energy technologies, and other industries. City University of New York. Cornell University.
But the promise is worth pursuing, says MIT Professor Yet-Ming Chiang, because the amount of energy that can be stored in experimental versions of such cells is already nearly double that of conventional lithium-ion batteries. —Co-author Venkatasubramanian Viswanathan, professor of mechanical engineering at Carnegie Mellon University.
The fact that MXenes can accommodate ions and molecules in this way is significant because it expands their ability to store energy. Barsoum and Gogotsi’s report looks at intercalation of MXenes with a variety of ions, including lithium, sodium, magnesium, potassium, ammonium and aluminum ions. —Yury Gogotsi.
The winning concepts were: A molten air battery that uses a molten salt electrolyte at elevated temperature from Professor Stuart Licht at George Washington University. A novel rechargeable zinc battery from the research group of Professors Paul Wright and James Evans from the University of California, Berkeley.
Researchers at the University of Wyoming Carbon Management Institute (CMI) discovered a major new lithium resource near Rock Springs during a geological carbon dioxide storage site characterization project sponsored by the US Department of Energy.
A team of researchers from Northwestern University, UCLA and the University of St. Within their pores, the MOFs can store gases such as hydrogen or carbon dioxide. Suitable candidates include ordinary table salt (sodium chloride), the common salt substitute potassium chloride, or potassium benzoate, an approved preservative.
Researches developed EV batteries that store 6 times more charge than common ones . An international team of researchers led by Stanford University has developed rechargeable batteries that store the charge up to 6 times more than the normal currently available commercial ones.
Researchers at the University of Texas at Austin, including Prof. With this glass, a rechargeable battery with a metallic lithium or sodium anode and an insertion-compound as cathode may require a polymer or liquid catholyte in contact with the cathode. eV, which promises to offer acceptable operation at lower temperatures.
Researchers at Stanford University and SLAC led by Stanford associate professor Yi Cui have used a sulfur–TiO 2 yolk–shell design for a cathode material for a lithium-sulfur battery that achieved an initial specific capacity of 1,030? (c) (b) Capacity retention of sulfur–TiO 2 yolk–shell nanostructures cycled at 0.5 Click to enlarge.
In partnership with a consortium of local research institutions, this project deploy smart grid systems at partners’ university campus properties and technology transfer laboratories. The 1 MW/4hr system will store potential energy in the form of compressed air in above-ground industrial pressure facilities. 10,792,045. 44 Tech Inc. (PA).
Video: EV Guru: Sodium-Ion Batteries are Coming Sooner Than You think! The mining industry cannot keep up with the demand, so the alternative is to manufacture batteries based on sodium chemistry. The big issue with sodium-ion batteries is that they can store only about two-thirds of the energy of Li-ion batteries of equivalent size.
Eagle Picher, in partnership with the Pacific Northwest National Laboratory, will develop a new generation of high energy, low cost planar liquid sodium beta batteries for grid scale electrical power storage applications. Arizona State University, in partnership with Fluidic Energy Inc., DOE grant: $7,200,000). DOE grant:$5,349,932).
Sodium ion batteries (SIBs, also known as Na ion batteries or NIBs) have been on the horizon for a while but they weren’t expected to be mature enough for cars for some time yet. SIBs are benign, containing no lithium or cobalt, and sodium is abundant worldwide. Overall, SIBs are around 30% cheaper than lithium ion.
Sadoway and his students developed liquid metal batteries, which can store large amounts of energy and thus even out the ups and downs of power production and power use, a decade ago. The technology is being commercialized by a Cambridge-based startup company, Ambri. Earlier post.). Click to enlarge.
The companys plan is to electrochemically strip carbon dioxide out of the ocean, store or use the CO 2 , and then return the water to the sea, where it will naturally absorb more CO 2 from the air. This energy-intensive approach involves passing ambient air through chemical solvents or filters, and then storing or reusing the captured carbon.
In a review paper in the journal Nature Materials , Jean-Marie Tarascon (Professor at College de France and Director of RS2E, French Network on Electrochemical Energy Storage) and Clare Gray (Professor at the University of Cambridge), call for integrating the sustainability of battery materials into the R&D efforts to improve rechargeable batteries.
A team at the Ohio State University has developed a membrane that regulates bi-directional ion transport across it as a function of its redox state and that could be used as a programmable smart membrane separator in future supercapacitors and redox flow batteries. plugin EVs to Tesla’s 85 kWh battery pack). Click to enlarge.
But we do actually need that energy to be generated,” says Alper Bozkurt, who with Veena Misra codirects the Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST) at North Carolina State University. The group fabricated their device using CFRP, sodium potassium niobate (KNN) nanoparticles, and epoxy resin.
Researchers at the Skoltech Center for Electrochemical Energy Storage (CEES), a partnership between the MIT Materials Processing Center and Lomonosov Moscow State University, are focusing on the development of higher capacity batteries. Rechargeable metal-air batteries. earlier post ). —Harry Tuller.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content