This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
One of the more promising candidates for batteries beyond the current standard of lithium-ion materials is the sodium-ion (Na-ion) battery. Na-ion is particularly attractive because of the greater abundance and lower cost of sodium compared with lithium. In addition, when cycled at high voltage (4.5
Pacific Gas and Electric Company (PG&E) and the California Energy Commission today unveiled a utility-scale sodium-sulfur battery energy storage system ( earlier post ) pilot project to better balance power needs of the electric grid. The system has a 4 megawatt capacity, and can store more than six hours of energy.
Researchers at Pacific Northwest National Laboratory (PNNL) have devised an alloying strategy that enables sodium-beta batteries to operate at significantly lower temperatures. The new electrode enables sodium-beta batteries to last longer, helps streamline their manufacturing process and reduces the risk of accidental fire.
GE’s Energy Storage business announced $63 million in new Durathon sodium-halide battery orders since the business launched in July. The technology is unique because it can function in a variety of extreme conditions and store as much energy as lead-acid batteries twice its size while lasting up to 10 times as long. Earlier post.)
A team from the University of New South Wales (Australia) reports on a novel core-shell strategy leading to high and stable hydrogen absorption/desorption cycling for sodium borohydride (NaBH 4 ) under mild pressure conditions (4 MPa) in an open-access paper in the journal ACS Nano. With a high storage capacity (10.8
Solid-state sodium-ion batteries are safer than conventional lithium-ion batteries, which pose a risk of fire and explosions, but their performance has been too weak to offset the safety advantages. Normally, a solid-state battery’s ability to store energy is halted when the resistive cathode?electrolyte
Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9 Na is comparable to graphite for standard lithium ion batteries.
The hybrid systems research team at GE Global Research has successfully demonstrated a dual battery system for an electric transit bus, pairing a high-energy density sodium metal halide battery with a high-power lithium battery. Sodium batteries are on the opposite side of the spectrum. Click to enlarge.
GE’s ecomagination.com publication reports that GE engineers have begun testing a transit bus equipped with a new hybrid energy system integrating GE’s Durathon sodium-halide battery ( earlier post ), a lithium-ion battery and a hydrogen fuel cell.
In October 2008, Xcel began testing a one-megawatt sodium-sulfur (NaS) battery ( earlier post ) to demonstrate its ability to store wind energy and move it to the electricity grid when needed. They are able to store about 7.2 megawatt-hours of electricity, with a charge/discharge capacity of one megawatt.
Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.
RAL researchers are proposing a new process for the decomposition of ammonia to release hydrogen that involves the stoichiometric decomposition and formation of sodium amide from Na metal. To date, very few candidates show potential beyond that of the seminal work on titanium-doped sodium alanate. Credit: ACS, David et al. William I.
Researchers at Empa and the University of Geneva (UNIGE) have developed a prototype of a novel solid-state sodium battery with the potential to store extra energy and with improved safety. The closo-borate sodium superionic conductor—Na 2 (B 12 H 12 ) 0.5 (B B 10 H 10 ) 0. —Duchêne et al. Duchêne et al. Resources.
John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C. A = lithium or sodium (Li or Na), M represents a metal and 1 ≤ n < z. —Lu et al.
After years of anticipation, sodium-ion batteries are starting to deliver on their promise for energy storage. But so far, their commercialization is limited to large-scale uses such as storing energy on the grid. Sodium-ion batteries just don't have the oomph needed for EVs and laptops.
nm, average) of iron pyrite (FeS 2 ) nanoparticles are advantageous to sustain reversible conversion reactions in sodium ion and lithium ion batteries. In the paper, they reported reversible capacities of more than 500 and 600 mAh/g for sodium and lithium storage for ultrafine nanoparticles, along with improved cycling and rate capability.
The Advanced Research Projects Agency - Energy (ARPA-E) has awarded $3 million from its 2015 OPEN funding to a project to develop an all-solid-state sodium battery. A sodium-based battery, on the other hand, has the potential to store larger amounts of electrical energy at a significantly lower cost. Led by Steve W.
Natron Energy , a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has closed a strategic investment by Chevron Technology Ventures (CTV) to support the development of stationary energy storage systems for demand charge management at electric vehicle (EV) charging stations.
The circulating seawater in the open-cathode system results in a continuous supply of sodium ions, endowing the system with superior cycling stability that allows the application of various alternative anodes to sodium metal by compensating for irreversible charge losses. an alloying material), in full sodium-ion configuration.
Researchers from UNSW Sydney (Australia) report in an open-access paper in the Journal of Power Sources on the use of hard carbons derived from automotive shredder residue (ASR) as a suitable anode electroactive material for sodium-ion batteries (NIBs). The situation is much worse for graphite. Sarkar et al. 2023.233577
Upon discharge from a nuclear reactor, the UNF is initially stored in steel-lined concrete pools surrounded by water. Most of the nation’s used fuel is stored at more than 70 reactor sites across the country. It is later removed from the pools and placed into dry storage casks with protective shielding. Award amount: $1,580,774).
Researchers within the RS2E network on electrochemical energy storage (Réseau sur le stockage électrochimique de l’énergie) in France have developed the first sodium-ion battery in an 18650 format. The main advantage of the prototype is that it relies on sodium, an element far more abundant and less costly than lithium.
Yabuuchi has showed, among other things, how new battery materials can improve the efficiency of lithium-ion and sodium-ion batteries. The “Science Award Electrochemistry” aims to promote outstanding scientific and engineering achievements and provide an incentive for the development of high-performance energy stores.
Initial studies revealed that antimony could be suitable for both rechargeable lithium- and sodium-ion batteries because it is able to store both kinds of ions. Sodium is regarded as a possible low-cost alternative to lithium as it is much more naturally abundant and its reserves are more evenly distributed on Earth.
The sodium alanate material used to store the hydrogen resides within the tubes. Researchers at Sandia National Laboratories have successfully designed and demonstrated key features of a hydrogen storage system that utilizes a complex metal hydride material—sodium alanate. Photo by Randy Wong) Click to enlarge. Earlier post.).
Researchers are working on ways to store more energy in the cathode materials by increasing nickel content. Nickel-rich cathode materials have real potential to store more energy. These carry advantages for storing and discharging energy faster. (Image courtesy of Jie Xiao | Pacific Northwest National Laboratory).
A team from Stanford University and Ruhr-Universität Bochum have demonstrated the novel concept of a “desalination battery” that uses an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. Click to enlarge. Their paper is published in the ACS journal Nano Letters.
With regard to overall storage capability and potential for further fuel efficiency improvements, the demand for larger battery systems based on lithium, nickel and sodium will continue to grow through the increased market penetration of vehicles with higher levels of hybridization and electrification. Sodium-nickel chloride batteries.
However, there still remain some major hurdles to the development of Ca-based batteries, one of them being a lack of knowledge on suitable cathode materials that can efficiently store and release Ca in a reversible manner.
Metal hydride tanks store hydrogen in a relatively manageable volume but are very heavy and expensive, as well as operating only at high temperatures or far too slowly. The nontoxic aqueous solution of formate is easily stored and transported. to sodium formate in 96% yield at 70 °C in water/THF without additional CO 2.
To do that, the glass granulate is initially segregated by type for clear verification of source and color and then stored in bins. Saint-Gobain Glass then mixes the recyclate with, among other things, quartz sand, sodium carbonate, and chalk—the basic components of glass.
Using a new metric—“Energy Stored on Invested, ESOI”—they concluded that batteries were the worst performers, while compressed air energy storage (CAES) performed the best, followed by pumped hydro storage (PHS). When demand is high, the water is released through turbines that generate electricity. —Charles Barnhart.
In trials, GE’s sodium metal halide Durathon batteries ( earlier post ) have successfully powered GE Mining’s Scoop, an underground vehicle that transports mining materials, at Coal River Energy, LLC in Alum Creek, West Virginia. Sodium-metal halide cell basic chemistry. Click to enlarge.
published in the ACS journal Chemical Reviews , reviews in detail four stationary storage systems considered the most promising candidates for electrochemical energy storage: vanadium redox flow; sodium-beta alumina membrane; lithium-ion; and lead-carbon batteries. Sodium-beta alumina membrane battery. In their study, Yang et al.
Natron Energy, a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has ( earlier post ), has been awarded a $3-million grant by the California Energy Commission (CEC) for “Advanced Energy Storage for Electric Vehicle Charging Support.”
To be economically viable, the target weight percentage of hydrogen stored in such a material has been set at 6% by the US Department of Energy. weight% of hydrogen; the hydride materials being verified and scaled-up by Aldrich Materials Science can potentially store up to 10 weight% of hydrogen, reversibly, the company says.
Fresh water is then used to release the stored lithium. Purification of the lithium, then reaction with sodium carbonate to convert it to lithium carbonate. Developed by Eramet in liaison with IFPEN (the French Institute of Petroleum and New Energies) and Seprosys, this works like a sponge, capturing the lithium contained in the brine.
The Jadar project would support the evolution of Rio Tinto—one of the world’s largest miners—into a chemical producer to make battery-grade lithium carbonate, a critical mineral used in large-scale batteries for electric vehicles and storing renewable energy.
In industry, molecular hydrogen and reactive reagents such as sodium borohydride are used as reducing agents during the production of pharmaceuticals, agrichemicals and ammonia for fertiliser. Manufacture of these substances is energy costly, leads to the release of carbon dioxide and they are difficult to handle and store, Dr. Colbran notes.
of Greene to develop an electric forklift for use in freezer warehouses using GE’s Durathon sodium-halide batteries. which is seeking to store a megawatt-hour worth of power in a “flow-assisted” zinc battery that uses an advanced battery management system -- enough to power 40 homes for a day. Earlier post.) Graphene Devices Ltd.
The fact that MXenes can accommodate ions and molecules in this way is significant because it expands their ability to store energy. Barsoum and Gogotsi’s report looks at intercalation of MXenes with a variety of ions, including lithium, sodium, magnesium, potassium, ammonium and aluminum ions. —Yury Gogotsi.
Unlike a typical hydrogen fuel cell, the system doesn’t store its fuel as pressurized hydrogen gas, but stores it as a solid chemical material, making it easy for end-users to handle in the field. HES has been able to show that its system can store 7% of its weight as hydrogen with a fuel utilization rate of close to 90%.
In order to store electricity generated at night, windmill operators need to install sodium-sulfur battery systems, which are as costly as power generators. Power companies buy windmill electricity generated during the daytime and resell it to households, factories and buildings.
The Total-MIT research project is primarily focused on development of a low-cost, long-life battery suited to store the power generated by solar panels. The ability to store power is a major challenge and an essential ingredient for the scale up and widespread deployment of affordable solar power. The researchers have since switched.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content