This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Audi has included the economical and efficient use of water as a key aspect of its Mission:Zero environmental program. The company plans to keep its own water consumption to a minimum and stop using drinking water in vehicle production in the future. Drinking water is a valuable and scarce resource: 2.2
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. The conversion rate reaches 32.9 ± 1.38
A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage. Additionally, H 2 O is needed for water splitting.
Researchers have developed a nickel-stabilized, ruthenium dioxide (Ni-RuO 2 ) anode catalyst for proton exchange membrane (PEM) water electrolysis. The Ni-RuO 2 catalyst shows high activity and durability in acidic OER for PEM water electrolysis. Illustration by Zhen-Yu Wu. 2 , suggesting potential for practical applications.
A team led by researchers at Tokyo Institute of Technology (Tokyo Tech) have discovered a new bimetallic electrocatalyst for the oxygen evolution reaction (OER) in electrochemical water splitting: CaFe 2 O 4. In addition, the new OER boosting mechanism found in CaFe2O4 could lead to the engineering of other useful catalysts. 0c02710.
Australia-based Arafura Resources Limited has awarded Hatch a contract to carry out Engineering and Procurement Services for the Nolans NdPR project hydrometallurgical plant. The project is underpinned by low-risk mineral resources that have the potential to supply a significant proportion of the world’s NdPr demand, according to the company.
Methanol–water reforming could prove to be a promising solution for hydrogen production/transportation in stationary and mobile hydrogen applications. MoC produces an active interfacial structure for water dissociation, methanol activation, and successive reforming processes with compatible activity. 0c10776.
Researchers led by engineers at The University of Texas at El Paso (UTEP) have proposed a low-cost, cactus-inspired nickel-based material to help split water more cheaply and efficiently. Nickel, however, is not as quick and effective at breaking down water into hydrogen. Resources Navid Attarzadeh, Debabrata Das, Srija N.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Alongside hydrogen generation from water, the multi-disciplinary research team is investigating photochemical conversion of carbon dioxide into synthetic fuel.
Both half reactions of water electrolysis—hydrogen and oxygen evolution—are unfortunately slow and require a lot of power. The material can be used as either an anode or a cathode, and demonstrates high activity and stability in the production of hydrogen and oxygen in the electrolysis of water. Zhang, S.L., and Lou, X.W.
Researchers at the University of Ontario Institute of Technology are developing a new method to dissociate water vapor into hydrogen gas by microwave-generated plasma (plasmolysis). In this study, a unique novel system is designed to decompose water vapor in a commercial modified 2.45 —Chehade et al. 2019.116831.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner. Qian Wang et al.
Photoelectrochemical (PEC) water splitting based on solar energy is one promising approach for the production of green hydrogen. However, its widespread application is limited by a lack of efficient photoanodes for catalyzing the rate-limiting oxygen evolution reaction (OER), an important reaction in PEC water splitting. 202300951
A new study of the impact of high EV adoption on the Western US power grid by a team from Pacific Northwest National Laboratory (PNNL) has found that 2028 grid resource adequacy—from generation through transmission—is likely to be sufficient for high EV penetration. million for the WECC.
Compass Minerals, a leading global provider of essential minerals, announced the successful, third-party conversion testing of its lithium brine resource into both lithium carbonate and battery-grade lithium hydroxide, representing a significant milestone in its previously announced lithium development project. Source: Compass Minerals.
Researchers in Israel have designed a separate-cell photoelectrochemical (PEC) water-splitting system with decoupled hydrogen and oxygen cells for centralized hydrogen production. Photoelectrochemical Water Splitting Cell Architectures. (A) A paper describing their system is publishedin the journal Joule. —Landman et al.
Korea’s Ulsan National Institute of Science and Technology (UNIST) have developed a novel process for the production of hydrogen using various types of biomass, including lignin, as an efficient alternative to water oxidation as an electron source. Conventionally, water is considered a cheap and clean source of electrons; 2H 2 O ?
As water-splitting technologies improve, often using porous electrode materials to provide greater surface areas for electrochemical reactions, their efficiency is often limited by the formation of bubbles that can block or clog the reactive surfaces. As a result, there were substantial changes of the transport overpotential. 2021.02.015.
Researchers at Uppsala University have developed photocatalytic composite polymer nanoparticles (“polymer dots”) that show promising performance and stability for the production of hydrogen from water and sunlight. Since polymer dots (Pdots) are so tiny, they are evenly distributed in water. 0c12654.
Engineers at the University of Pittsburgh Swanson School of Engineering are using membrane distillation technology to enable drillers to filter and reuse the produced water in the oil and gas industry, in agriculture, and other beneficial uses. The method is already being tested in Texas, North Dakota, and most recently in New Stanton, Pa.
One environmental concern of the downstream sector is that of water consumption at lithium brine facilities, which operate in some of the driest areas on the planet. These operations take large volumes of water and brine for their process and to run their operations. Source: Roskill.
Scientists at Tokyo Institute of Technology (Tokyo Tech) have demonstrated the first visible-light photoelectrochemical system for water splitting using TiO 2 enhanced with cobalt. The proposed approach is simple and represents a stepping stone in the quest to achieve affordable water splitting to produce hydrogen. —Prof.
Scientists at Tokyo Institute of Technology (Tokyo Tech) have developed a hybrid material constructed from a metal oxide nanosheet and a light-absorbing molecule for splitting water molecules (H 2 O) to obtain hydrogen (H 2 ) under sunlight. 0c02053.
SK On, a global electric vehicle (EV) battery manufacturer, signed a lithium supply deal with Australia’s Lake Resources ( earlier post ), a move that will further strengthen its key battery materials supply chain in response to robust business growth and geopolitical risks. This ranks Kachi as one of the world’s top 10 brine resources.
Currently, the most efficient electrolyzers contain platinum and iridium, which are needed for the electrodes on which the hydrogen and oxygen gas are produced from water. That’s why we’re constantly looking for electrode materials made from more abundant resources which also can be used as efficient and stable electrocatalysts.
American Battery Technology Company (ABTC) ( earlier post ) announced results of its third-party Qualified Person (QP)-audited Inferred Resource Report that details the analysis of its lithium deposit at its Tonopah Flats Lithium Project in Nevada. The inferred resources report concludes that Tonopah Flats may hold an estimated 15.8
Vulcan Energy Resources will collaborate with DuPont Water Solutions,a leader in water filtration and purification, to test and to scale up Direct Lithium Extraction (DLE) solutions for Vulcan’s Zero Carbon Lithium extraction process. Earlier post.). Francis Wedin, Managing Director. Stringfellow and Patrick F.
Researchers in Spain have developed hydrogen production without contact electrodes via water electrolysis mediated by the microwave-triggered redox activation of solid-state ionic materials at low temperatures ( Nature Energy. In thermochemical cycles, the highly energy-demanding splitting of water molecules (?H Serra et al.
Through its venture capital fund BMW i Ventures, the BMW Group has taken a stake in Colorado-based Jetti Resources. Founded in 2014, Jetti Resources has developed a pioneering process for copper extraction that utilizes previously unused ore from existing copper mines. 2022.118111.
However, questions remain about the size of the resource, the potential rate of decline, the potential for regeneration, and sustainability of production. The Salton Sea geothermal system is the primary potential geothermal resource for lithium in the United States, and it’s a world-class resource. With nearly $1.2
Researchers from the University of North Carolina have synthesized high-photovoltage multijunction Si nanowires (SiNWs) that are co-functionalized to split water catalytically. When integrated with the co-catalysts and suspended in water, these light-activated nanoreactors produced hydrogen gas under visible and infrared light.
An open-access paper on the study is published in the journal Resources, Conservation and Recycling. Production of Li 2 CO 3 from brine-based resources had less life cycle GHG emissions and freshwater consumption per tonne of Li 2 CO 3 than Li 2 CO 3 from ore-based resources. 2021.105762.
The system pierces the housing, applying the water exactly where it is needed: to cool the cells and modules in the battery housing. Extinguishing thus takes place in a very resource-efficient way and reduces the spread of flue gases to a minimum. The water fills the battery housing completely and thus ensures efficient cooling.
In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals. Photocatalytic water splitting has attracted great interest as a means of cost-effective conversion of sustainable solar energy to valuable chemicals. Credit: DICP.
Unlike exhaust from burning coal and gas that contains CO 2 , burning hydrogen emits only water vapor and oxygen. Hydrogen is not a greenhouse gas, but its chemical reactions in the atmosphere affect greenhouse gases such as methane, ozone, and stratospheric water vapor. —Dr Sand Resources Sand, M., Sand et al. Skeie, R.B.,
Previously, TMC and Allseas announced successful trials of the nodule collector vehicle in deep-water in the Atlantic as well as harbor wet-test commissioning and shallow-water drive tests in the North Sea. Based upon this feedback and with more than 600 comments received, an updated EIS was submitted to the ISA in March 2022.
The use of vast amounts of high-purity water for hydrogen production may aggravate the shortage of freshwater resources. This is achieved by introducing a Lewis acid layer (for example, Cr 2 O 3 ) on transition metal oxide catalysts to dynamically split water molecules and capture hydroxyl anions. Resources Guo, J.,
EIT InnoEnergy, the European innovation engine for sustainable energy, announced a partnership with Vulcan Energy Resources Limited (Vulcan), a start-up lithium exploration company, to produce the world’s first completely carbon-neutral lithium in Germany. The region contains Europe’s largest lithium resource and one of the largest worldwide.
Conventional water electrolysis for the production of hydrogen faces technological challenges to improve the efficiency of the water-splitting reaction for the sluggish oxygen evolution reaction (OER). Oxygen and hydrogen are generated during a water electrolysis reaction (top right). —Associate Director Lee.
(a) A schematic diagram of the DAE module with a water harvesting unit made of porous medium soaked with the hygroscopic ionic solution. (b) c) Equilibrium water uptakes of hygroscopic solutions at different air R.H. (e) In the meanwhile, water scarcity has been exacerbated by pollution, industrial consumption, and global warming.
Westinghouse Electric Company launched its newest nuclear technology, the AP300 small modular reactor (SMR), a 300-MWe (900MWth) single-loop pressurized water reactor. The AP300 SMR offers reliable, safe and clean electricity, as well as additional applications for district heating and water desalination.
The key input/output/intermediate energy streams are composed of the PV-generated electrical work available for electrolysis, heat output from the heat exchanger and the external work required for water pumping. Within this reactor, photoelectrochemical cells use solar energy to split water molecules into hydrogen and oxygen.
In an open access paper published in Nature Communications , researchers from the University of Wollongong in Australia report that their capillary-fed electrolysis cell demonstrates water electrolysis performance exceeding commercial electrolysis cells, with a cell voltage at 0.5 2 and 85 °C of only 1.51 kWh/kg hydrogen (vs. Hodges et al.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content