This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
million for the next phase of Gigastack, a new renewable hydrogen project, as part of the Department for Business, Energy and Industrial Strategy (BEIS) Hydrogen Supply Competition. Producing hydrogen has traditionally been associated with high carbon emissions, but by using renewable electricity—e.g., The UK has awarded £7.5
The California Energy Commission (CEC) adopted a report establishing offshore wind goals and moving the state one step closer to development of the clean energy resource off California’s coast. Additional transmission infrastructure will be needed to deliver offshore wind energy from this region to the grid.
This award marks the first Advanced Class Gas Turbines in the industry specifically designed and purchased as part of a comprehensive plan to sequentially transition from coal, to natural gas and finally to renewable hydrogen fuel, and creates a roadmap for the global industry to follow. and Hitachi, Ltd.
thyssenkrupp recently introduced industrial-scale water electrolysis for large projects. By splitting water into hydrogen and oxygen, this technology delivers “green” hydrogen, a clean, CO 2 -free energy carrier. The only inputs needed are water and renewable electricity from wind, hydro power or photovoltaics.
While there is global potential to generate renewable energy at costs already competitive with fossil fuels, a means of storing and transporting this energy at a very large scale is a roadblock to large-scale investment, development and deployment. Generation 2 moves the Haber-Bosch process to renewable sources of hydrogen.
In Germany, BSE Engineering and the Institute for Renewable Energy Systems at Stralsund University of Applied Sciences (IRES) have demonstrated the conversion of wind power into renewable methanol. The team uses green electricity to split water into hydrogen and oxygen in an electrolysis step.
The plant will use electricity from offshore wind turbines to produce renewable hydrogen for buses, trucks and potentially taxis. Hydrogen may also be produced by means of electrolysis, a process in which electricity is used to split water into hydrogen and oxygen. Avedøre Power Station on Avedøre Holme.
In a commentary in the journal Joule , Rob McGinnis, founder and and CEO of Prometheus , a company that is developing technology to remove carbon dioxide from the air and turn it into fuels, discusses the technology advances that could lead to the potential price-competitiveness of renewable gasoline and jet with fossil fuels.
Because these units can start and stop quickly and operate at partial loads, they have become increasingly important in areas with high shares of renewable electricity generation from wind and solar. The plant uses virtually no water, an important attribute in northern Texas.
In addition to hydrogen, other potential renewable fuels are being studied for future applications, and Wärtsilä engines are already capable of combusting 100% synthetic carbon-neutral methane and methanol. Hydrogen as part of the renewable electricity system of the future. —Marco Wiren, President, Wärtsilä Energy Business.
a provider of long duration energy storage solutions, and Encore Renewable Energy, a developer of renewable energy generation and storage projects, jointly announced plans to develop the United States’ first long-duration, liquid-air energy storage system. Highview Power Storage, Inc.,
thyssenkrupp’s proprietary water electrolysis technology for the production of. conducted the necessary tests jointly in an existing water electrolysis plant operating as part of the Carbon2Chem project ( earlier post ) in Duisburg. green hydrogen meets the requirements for participation in the primary control reserve market.
Bloom Energy, a developer of solid oxide fuel cell power generators, announced the ability of its Energy Servers to operate on renewable hydrogen. At peak times, some US states and countries already have more renewable power than their grids can handle.
The US Bureau of Ocean Energy Management (BOEM) will hold its second competitive lease sale for renewable energy on the US Outer Continental Shelf (OCS) on 4 Sept., offering nearly 112,800 acres offshore Virginia for commercial wind energy leasing. Map of the Virginia wind energy area. The area is located 23.5 Click to enlarge.
Researchers at MIT are proposing using a variation on pumped hydroelectric systems for storage of electricity produced by offshore wind farms. The key to this Ocean Renewable Energy Storage (ORES) system is the placement of 30-meter-diameter hollow concrete spheres on the seafloor under the wind turbines. Earlier post.).
A team of researchers in Israel has developed a two-step electrochemical-chemical cycle for decoupled water splitting with high efficiency. In the two-step electrochemical–thermally activated chemical (E-TAC) cycle process, water is reduced to hydrogen gas at the cathode, liberating OH – ions. —Dotan et al. 2H 2 + O 2.
Minneapolis-based Xcel Energy will work with Idaho National Laboratory to demonstrate a system that uses a nuclear plant’s steam and electricity to split water. —Richard Boardman, national technical lead for the DOE Light Water Reactor Sustainability Program’s Flexible Plant Operations and Generation Pathway. Earlier post.)
One path to achieving this is with renewable synthetic fuels (e-fuels). Bosch outlines seven reasons why renewable synthetic fuels should be part of tomorrow’s mobility mix: Time. Renewable synthetic fuels have long since left the basic research phase. emitted by burning renewable synthetic fuels is reused to produce new fuels.
Energy Vault, a company developing grid-scale gravity energy storage solutions, has entered into an energy storage system agreement with DG Fuels, a developer of renewable hydrogen and biogenic-based, synthetic sustainable aviation fuel (SAF) and diesel fuel. Under the terms of the agreement, Energy Vault agreed to provide 1.6
Sundsvall Energi will partner with Liquid Wind to be the host and provide carbon dioxide for the second commercial-scale—100,000 t—electrofuel facility in Sweden. Biogenic carbon dioxide from the Sundsvall energy facility will be captured and combined with renewable hydrogen to generate green electrofuel, eMethanol.
The project will be based in Vaasa and will focus on enabling a new way to store renewable energy. The system will use renewable energy to produce hydrogen to be stored and reprocessed. The system will use renewable energy to produce hydrogen to be stored and reprocessed. Both viewpoints are extremely important to us.
The feed-stock reduction is achieved primarily by supplementing the process with oxygen and hydrogen produced by water electrolysis units that are powered by clean wind and solar generated electricity. DGF’s cellulosic feedstock does not impair food supply and is essentially water neutral. —Christopher J.
Andrews have demonstrated that ammonia can be synthesized directly from air (instead of N 2 ) and H 2 O (instead of H 2 ) under a mild condition (room temperature, one atmosphere) with supplied electricity which can be obtained from renewable resources such as solar, wind or marine. —Lan et al. Rong Lan, John T.
China-based Dongfang Electric Corporation (DEC) reported successful testing of non-desalinated seawater electrolysis technology for hydrogen production powered by offshore wind. The floating hydrogen production platform Dongfu One is sited in an offshore wind farm in East China’s Fujian province.
UK-based ULEMCo has worked with Yorkshire Water to produce what is believed to be the first water tanker anywhere to operate on hydrogen fuel. The benefit is further enhanced by the vehicle refueling from an ITM hydrogen fuelling station in Sheffield that is powered directly from renewablewind.
The flagship project MethanQuest was launched in September 2018, and on it a total of 29 partners from research, industry and the energy sector have come together to work on processes for producing hydrogen and methane from renewables and for using them to achieve climate-neutral mobility and power generation.
The US Department of the Interior (DOI) will offer nearly 80,000 acres offshore Maryland for commercial wind energy development in a 19 August 2014 competitive lease sale. Competitive lease sales have generated more than $5 million in high bids for more than 277,500 acres in federal waters. Bluewater Wind Maryland, LLC.
The Dolphyn project showcases a floating semi-submersible design with an integrated wind turbine, PEM electrolysis and desalination facilities. The project concerns the production of hydrogen at scale from offshore floating wind in deep water locations. The hydrogen projects receiving funding are: Dolphyn. Contract value: £3.12
Researchers at the University of Melbourne (Australia) have demonstrated a method of direct hydrogen production from air— in situ capture of freshwater from the atmosphere using hygroscopic electrolyte and subsequent electrolysis powered by solar or wind with a current density up to 574 mA cm ?2.
Starting in 2013, Audi will begin series production of TCNG models whose engines—derived from TFSI units—will be powered by e-gas: synthetic methane produced via the methanation of hydrogen produced by electrolysis using renewable electricity. Wind turbines are the first significant component of the Audi e-gas project.
The intention is to set up a power-to-x competence center at the Brandenburg University of Technology Cottbus-Senftenberg and to construct a demonstration plant for the production of synthetic fuels and chemicals using electric power generated in photovoltaic and wind power plants. —Andreas Schell, CEO of Rolls-Royce Power Systems.
The Biden Administration announced a series of measures to support rapid offshore wind deployment, including designation of a new wind energy area and targeting the deployment of 30 GW of offshore wind by 2030. New Wind Energy Area. Deploying 30 GW of Offshore Wind by 2030.
Statoil has made the final investment decision to build the world’s first floating wind farm: The Hywind pilot park offshore Peterhead in Aberdeenshire, Scotland. The wind farm will power around 20,000 households. Statoil is proud to develop the world’s first floating wind farm. Production start is expected in late 2017.
The Audi e-gas plant, which can convert 6MW of input power, utilizes renewable electricity for electrolysis to produce oxygen and hydrogen. Because there is not yet a widespread hydrogen infrastructure, the hydrogen is reacted with CO 2 in a methanation unit to generate renewable synthetic methane, or Audi e-gas. Earlier post.).
Electricity sourced from sun and wind is used to split water into hydrogen and oxygen in a process called electrolysis. It is not possible to build wind and PV plants everywhere. KG in the HyPerFerMent I project to produce renewable hydrogen from biomass. The outcome is always green hydrogen.
volts (V) of water-splitting voltage with its novel low-cost electrolysis technology. The theoretical minimum voltage needed to split water molecules into hydrogen and oxygen is 1.23 Nanosystem for water electrolysis. HyperSolar, Inc. announced that it had reached 1.25 V (at 25 °C at pH 0). Click to enlarge.
The DNV GL-led joint industry project, WIN WIN (WINd powered Water INjection), has completed its first phase and determined that wind power could be used to power offshore water injection. WIN WIN uses a floating wind turbine as a platform for an autonomous water injection system.
The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) announced up to $30 million in funding for a new program for technologies that use renewable energy to convert air and water into cost-competitive liquid fuels. ( A potentially greener technology option of using hydrogen from water electrolysis requires 9.5
Eneos’ Direct MCH uses an electrolyzer to produce MCH directly from water. Water is oxidized on the anode catalyst to produce oxygen, protons, and electrons. ENEOS has worked to scale up electrolyzers using Direct MCH technology in order to mass-produce MCH derived from renewable energy (Green MCH).
Our tests with renewable fuels are going very successfully. The Haru Oni project takes advantage of the perfect climatic conditions for wind energy in Magallanes province in southern Chile to produce the virtually CO?-neutral neutral fuel using low-cost green wind power. eFuels will make it possible to reduce fossil CO?-emissions
AW-Energy says that its wave energy device, when combined with other renewable energy sources, can enable significant green hydrogen cost reductions and is a viable solution in the drive to execute the world’s clean energy hydrogen roadmap. —Christopher Ridgewell, CEO of AW-Energy Oy.
If only incremental increases in renewable energy resources are introduced across the grid, electrolytic hydrogen will not become an environmentally sustainable solution. Hydrogen is very attractive because it only produces water vapor emissions when utilized on an aircraft. Ansell presented his findings at AIAA Aviation 2023 in June.
For FY 2014, the Hydrogen Production sub-program continued to focus on developing technologies to enable the long-term viability of hydrogen as an energy carrier for a range of applications with a focus on hydrogen from low-carbon and renewable sources. There are multiple DOE offices are engaged in R&D relevant to hydrogen production.
The technology could fundamentally transform the way electricity is stored on the grid, making power from renewable energy sources such as wind and sun far more economical and reliable. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content