This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. Image credit: Roksana Rashid, McGill University.
Electrolytic hydrogen production powered by renewable energy is seen as an environmentally friendly means to ameliorate global climate and energy problems. Both half reactions of water electrolysis—hydrogen and oxygen evolution—are unfortunately slow and require a lot of power. Zhang, S.L., and Lou, X.W.
Researchers from the University of Houston (UH) have developed a cobalt(II) oxide (CoO) nanocrystalline catalyst that can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. The generation of hydrogen from water using sunlight could potentially form the basis of a clean and renewable source of energy.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Zepler Institute, University of Southampton. Computerized tomography of a MOFC, showing buildup of TiO 2 (light blue particles) in the triangular channels.
Ricardo has developed a hydrogen-fueled research engine which could offer a renewable, economic and durable technology solution to accelerate zero-carbon emissions in heavy duty trucks, off-highway machines and marine vessels.
While there is global potential to generate renewable energy at costs already competitive with fossil fuels, a means of storing and transporting this energy at a very large scale is a roadblock to large-scale investment, development and deployment. Generation 2 moves the Haber-Bosch process to renewable sources of hydrogen.
Auburn University researchers are leading a $2-million US Department of Energy Co-Optima project ( earlier post ) that will evaluate renewable butyl acetate (BA) as a bio-based fuel additive that can be blended with diesel fuel to reduce soot and greenhouse gas emissions and yield cleaner engine operation in cold-weather conditions.
Bloom Energy, a developer of solid oxide fuel cell power generators, announced the ability of its Energy Servers to operate on renewable hydrogen. At peak times, some US states and countries already have more renewable power than their grids can handle.
In an open access paper published in Nature Communications , researchers from the University of Wollongong in Australia report that their capillary-fed electrolysis cell demonstrates water electrolysis performance exceeding commercial electrolysis cells, with a cell voltage at 0.5 2 and 85 °C of only 1.51 kWh/kg hydrogen (vs.
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
Siemens Energy, Duke Energy and Clemson University have teamed up to study the use of hydrogen for energy storage and as a low- or no-carbon fuel source to produce energy at Duke Energy’s combined heat and power plant located at Clemson University in South Carolina.
The University of British Columbia’s (UBC) Advanced Materials for Energy Storage Lab, under the leadership of Dr. Jian Liu, is the project’s research lead during the initial stages. The project includes two mining leases, with a combined area of 300 hectares, valid until June of 2032 and renewable thereafter.
A University of Colorado Boulder team has developed a new solar-thermal water-splitting (STWS) system for the efficient production of hydrogen. STWS cycles have long been recognized as a desirable means of generating hydrogen gas (H 2 ) from water and sunlight, the team notes. Christopher L. Musgrave, and Alan W.
Neste Oil, the world’s largest producer of renewable diesel (NExBTL), has signed a contingent commercial off-take agreement with Cellana, an algae biomass developer based in the United States. The agreement will enable Neste Oil to purchase Cellana’s algae oil for use as a feedstock in the future for producing renewable fuel.
New hydrogen production technology developed at the University of British Columbia (UBC) will be tested in a $7-million project between UBC, the government of Alberta and Alberta utility company ATCO. SMR still emits a significant amount of carbon dioxide and uses large quantities of water and energy. Image: MéridaLabs.
Rolls-Royce intends to support research into green fuels in the Lausitz region of eastern Germany together with the State of Brandenburg, Brandenburg University of Technology Cottbus and other industrial partners. Synthetic fuels are a decisive factor in energy transition and the use of renewable energies.
Researchers at Korea University have developed high-performance, textile-based electrodes for watersplitting (WSE); the non-noblemetal-based electrodes can generate a large amount of hydrogen with low overpotentials and high operational stability. 2 for the HER and 186 mV at 50 mA cm ?2 2 and a low cell voltage of 1.70
Vulcan Energy Resources will collaborate with DuPont Water Solutions,a leader in water filtration and purification, to test and to scale up Direct Lithium Extraction (DLE) solutions for Vulcan’s Zero Carbon Lithium extraction process. Earlier post.). Stringfellow and Patrick F.
volts (V) of water-splitting voltage with its novel low-cost electrolysis technology. The theoretical minimum voltage needed to split water molecules into hydrogen and oxygen is 1.23 Nanosystem for water electrolysis. HyperSolar, Inc. announced that it had reached 1.25 V (at 25 °C at pH 0). Click to enlarge.
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round. Trafigura, TechEnergy Ventures and Doral Energy-Tech Ventures also participated in the financing.
Utilization of renewable solar energy is crucial for addressing the global energy and environmental concerns and achieving sustainable development. In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals. Credit: DICP.
Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. Splitting water requires an applied voltage of at least 1.23 Credit: EPFL. V and up to 1.5
Researchers at the University of Melbourne (Australia) have demonstrated a method of direct hydrogen production from air— in situ capture of freshwater from the atmosphere using hygroscopic electrolyte and subsequent electrolysis powered by solar or wind with a current density up to 574 mA cm ?2.
SunHydrogen , the developer of a technology to produce renewable hydrogen using sunlight and water, has extended its sponsored research agreement with the University of Iowa through 31 August 2020. The University of Iowa has been a key and productive partner in the development of our GEN 1 panels.
Researchers at the University of Oklahoma, in collaboration with the University of Tulsa, have a novel approach for the water-assisted upgrading of the renewable chemical furfural, doubling or tripling the rate of conversion. Energy and water are interconnected in the production of renewable fuels.
Renewable hydrogen systems manufacturer Ways2H Inc. announced the completion of a facility in Tokyo that will convert sewage sludge into renewable hydrogen fuel for fuel cell mobility and power generation. A new facility in Tokyo that will convert sewage sludge into renewable hydrogen gas for fuel-cell vehicles is nearing completion.
Researchers from the Chinese Academy of Sciences and Tsinghua University have used a gallium, indium, tin and bismuth alloy to generate hydrogen, when placed in contact with an aluminum plate immersed in water. An open-access paper on their work appears in the Journal of Renewable and Sustainable Energy , from AIP Publishing.
Hydrokinetic energy is an abundant renewable resource that can boost grid resiliency and reduce infrastructure vulnerability, but it is currently a cost prohibitive option compared to other energy generating sources. The 11 SHARKS projects are: National Renewable Energy Laboratory. The University of Michigan.
A policy analysis by two University of Illinois researchers argues that Congress should minimally modify, not repeal, the Renewable Fuel Standard (RFS). The RFS is the first and only federal policy that directly mandates the use of renewable energy in the worthwhile effort to displace the use of fossil fuels for our energy needs.
VTT Technical Research Centre of Finland and Lappeenranta University of Technology (LUT) are beginning testing of the Soletair demo plant, which uses air-captured carbon dioxide to produce renewable fuels and chemicals. Phase 1: Renewable energy. Proton exchange membrane (PEM) water electrolysis is used for hydrogen production.
For example, the University of California, San Diego will receive approximately $3.5 University of Houston. The University of Houston (UH) will develop a battery using a novel water-based, lithium-ion chemistry that makes use of sustainable, low-cost, high-energy, organic materials. Princeton University.
One-pot electrolytic process produces H 2 and solid carbon from water and CO 2. In this study, they focused on the electrolysis component for STEP fuel, producing hydrogen and graphitic carbon from water and carbon dioxide. 2014), “A One-Pot Synthesis of Hydrogen and Carbon Fuels from Water and Carbon Dioxide,” Adv.
Researchers at Linköping University and Umeå University in Sweden have developed a new and efficient way to use electrocatalysis to produce hydrogen gas from water using electrodes with nanotruss structures of iron oxide. A paper on their work is published in the ACS journal Nano Letters. —Sebastian Ekeroth.
Chemical engineers at UNSW Sydney and University of Sydney have developed a hybrid plasma electrocatalytic process for the production of sustainable (“green”) ammonia. Non-thermal plasma activates water and air, producing NO x dissolved in solution as an intermediary for ammonium’s electrochemical synthesis.
A fast, green and one-step method for producing porous carbon spheres—a component for carbon capture technology and for new ways of storing renewable energy—has been developed by Swansea University researchers. storage and conversion, catalysis, gas adsorption and storage, drug and enzyme delivery, and water treatment.
The flagship project MethanQuest was launched in September 2018, and on it a total of 29 partners from research, industry and the energy sector have come together to work on processes for producing hydrogen and methane from renewables and for using them to achieve climate-neutral mobility and power generation.
A University at Buffalo-led research team has developed an efficient platinum group metal (PGM)-free catalyst for the oxygen reduction reaction (ORR) in PEM fuel cells that consists of atomically dispersed nitrogen-coordinated single Mn sites on partially graphitic carbon (Mn-N-C). and Harbin Institute of Technology.
Researchers at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University with collaborators at the University of Oregon and Manchester Metropolitan University have developed a seawater-resilient bipolar membrane electrolyzer. Resources D.H. Marin, J.T. Perryman et al. 2023.03.005
Researchers at Linköping University, Sweden, are attempting to convert carbon dioxide to fuel using energy from sunlight. Recent results have shown that it is possible to use their technique selectively to produce methane, carbon monoxide or formic acid from carbon dioxide and water.
A new study, led by academics at St John’s College, University of Cambridge, has used semi-artificial photosynthesis to explore new ways to produce and store solar energy. They used natural sunlight to convert water into hydrogen and oxygen using a mixture of biological components and manmade technologies. —Katarzyna Sokó?,
A new way of anchoring individual iridium atoms to the surface of a catalyst significantly increased its efficiency in splitting water molecules, scientists from the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University reported in an open-access paper in Proceedings of the National Academy of Sciences (PNAS). …we
The project concerns the production of hydrogen at scale from offshore floating wind in deep water locations. The concept consists of a large-scale floating wind turbine (nominally 10 MW) with an integrated water treatment unit and electrolyzers for localized hydrogen production. Led by Cranfield University. Contract value: £7.5
On behalf of the Australian Government, the Australian Renewable Energy Agency (ARENA) awarded A$22.1 million (US$16 million) in funding to 16 research projects to propel innovation in exporting renewable hydrogen. Funding recipients are: Australian National University (ANU) Hydrogen Generation by Electro-Catalytic Systems – $615,682.
The university’s Parking and Transportation Services and Cal State LA Hydrogen Research and Fueling Facility received a best practice award for sustainable transportation in the 2019 Energy Efficiency and Sustainability Best Practice Awards competition. for each additional hour.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content