This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
in close collaboration with GTI and The University of Texas at Austin, has launched a US Department of Energy project, Demonstration and Framework for H2@Scale in Texas and Beyond. The project is supported by DOE’s Hydrogen and Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy.
The University of Michigan and Ben-Gurion University of the Negev in Israel will create a research partnership to collaborate on developing renewable technologies. The partnership aims to make progress toward solving major challenges in the areas of advanced vehicle fuels, solar energy and thermoelectric materials.
Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. of hydrogen is currently produced via water electrolysis and only a fraction of this production is powered by renewable energy.
Utilization of renewablesolar energy is crucial for addressing the global energy and environmental concerns and achieving sustainable development. In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals. Credit: DICP.
Molecular photoswitches that can both convert and store energy could be used to make solar energy harvesting more efficient. The procedure was based on a dataset of more than 400,000 molecules, which the researchers screened to find the optimum molecular structure for solar energy storage materials.
Researchers from the University of Houston (UH) have developed a cobalt(II) oxide (CoO) nanocrystalline catalyst that can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. The generation of hydrogen from water using sunlight could potentially form the basis of a clean and renewable source of energy.
Researchers from Japan’s NIMS (National Institute for Materials Science), the University of Tokyo and Hiroshima University have jointly conducted a techno-economic analysis for hydrogen production from photovoltaic power generation (PV) utilizing a battery-assisted electrolyzer. 2018.11.119 ).
The Global Climate and Energy Project (GCEP) at Stanford University has awarded $10.5 million for seven research projects designed to advance a broad range of renewable energy technologies, including solar cells, batteries, renewable fuels and bioenergy. efficiency, low-cost silicon solar cells.
While there is global potential to generate renewable energy at costs already competitive with fossil fuels, a means of storing and transporting this energy at a very large scale is a roadblock to large-scale investment, development and deployment. Generation 2 moves the Haber-Bosch process to renewable sources of hydrogen.
Partners from Germany and Finland in the SOLETAIR project are building a compact pilot plant for the production of gasoline, diesel and kerosene from solar energy, regenerative hydrogen and carbon dioxide. An electrolysis unit developed by Lappeenranta University of Technology (LUT) produces the required hydrogen by means of solar power.
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. Image credit: Roksana Rashid, McGill University.
Researchers at Linköping University, Sweden, are attempting to convert carbon dioxide to fuel using energy from sunlight. Jianwu Sun and his colleagues at Linköping University are attempting to imitate photosynthesis to capture carbon dioxide from air and to convert it to chemical fuels, such as methane, ethanol and methanol.
Efforts to shift away from fossil fuels and replace oil and coal with renewable energy sources can help reduce carbon emissions but do so at the expense of increased inequality, according to a new study by researchers at Portland State University (PSU) and Vanderbilt University. —Julius McGee.
To generate the renewable electricity needed to feed production of green hydrogen, Cepsa will develop a 3GW portfolio of wind and solar energy projects with an additional €2-billion investment. It also has one of the highest wind and solar photovoltaic power generation and production capacity in Europe, and at the lowest cost.
Bloom Energy, a developer of solid oxide fuel cell power generators, announced the ability of its Energy Servers to operate on renewable hydrogen. At peak times, some US states and countries already have more renewable power than their grids can handle.
Under the FOCUS program, projects will develop advanced solar converters that turn sunlight into electricity for immediate use, while also producing heat that can be stored at low cost for later use as well as innovative storage systems that accept both heat and electricity from variable solar sources. Arizona State University.
Schematic of the “New Grid Testbed” components, including renewable energy generation, energy storage, smart distribution and electric transportation Click to enlarge. It is the largest renewable energy project of its kind in California. Solar carport. Three-and-a-half megawatts will be at UC Riverside’s main campus.
MW solar park at Chattanooga is owned and operated by Silicon Ranch; VW has signed a 20-year power purchase agreement. The award recognizes EPA Green Power Partners who distinguish themselves using on-site renewable energy applications, such as solar photovoltaic (PV) or landfill gas. Click to enlarge. Earlier post.).
SunHydrogen , the developer of a technology to produce renewable hydrogen using sunlight and water, has extended its sponsored research agreement with the University of Iowa through 31 August 2020. The University of Iowa has been a key and productive partner in the development of our GEN 1 panels.
Researchers at Washington University in St. A team of biologists and engineers modified Rhodopseudomonas palustris TIE-1 (TIE-1) so that it can produce a biofuel using only three renewable and naturally abundant source ingredients: carbon dioxide, solar panel-generated electricity and light. —Wei Bai. Ranaivoarisoa, T.O.,
Danish Minister for Transport Trine Bramsen, Aalborg municipal government representatives, and European media were invited to witness the first test runs of Geely methanol vehicles on Danish roads and visit the e-methanol production facility at Aalborg University.
Germany’s Minister of Economics and Technology, Sigmar Gabriel, together with representatives of power utility Stadtwerke Mainz AG, Siemens AG, The Linde Group and RheinMain University of Applied Sciences, inaugurated the construction of the Energiepark Mainz. This makes it possible to store electricity from renewable energy sources.
Ten of these projects are new while the rest received renewed funding based both on their achievements to date and the quality of their proposals for future research. University of California, Berkeley. University of California, Riverside. National Renewable Energy Laboratory. Northwestern University.
VTT Technical Research Centre of Finland and Lappeenranta University of Technology (LUT) are beginning testing of the Soletair demo plant, which uses air-captured carbon dioxide to produce renewable fuels and chemicals. The pilot plant is coupled to LUT’s solar power plant in Lappeenranta. Phase 1: Renewable energy.
However, there is a growing need to control energy flows intelligently in order to make optimum use of electricity from renewable sources. In this way, electricity from renewable sources can be tapped and stored as it becomes available.
A University of Colorado Boulder team has developed a new solar-thermal water-splitting (STWS) system for the efficient production of hydrogen. Despite the discovery, the commercialization of such a solar-thermal reactor is likely years away, the researchers said. Hydrogen Production Solar' Christopher L.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Zepler Institute, University of Southampton. Computerized tomography of a MOFC, showing buildup of TiO 2 (light blue particles) in the triangular channels.
According to a new study led by a team at Duke University, airborne particulate matter and dust are cutting solar photovoltaic energy output by more than 25% in certain parts of the world, with roughly equal contributions from ambient PM and PM deposited on photovoltaic surfaces. Credit: ACS, Bergin et al. Click to enlarge.
Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. conversion efficiency from solar energy to hydrogen, a record with earth-abundant materials.
The states account for 35% of US-installed wind capacity and while the region only produces about 4% of the nation’s solar energy, a number of pending large solar farms and community solar projects will greatly increase the region’s solar generating capacity.
Researchers from the University of Turku in Finland, Imperial College London and University College London have devised a synthetic metabolic pathway for producing renewable propane from engineered E. coli bacteria. This research was funded by a grant from the European Research Council. Kalim Akhtar & Patrik R.
On behalf of the Australian Government, the Australian Renewable Energy Agency (ARENA) awarded A$22.1 million (US$16 million) in funding to 16 research projects to propel innovation in exporting renewable hydrogen. Funding recipients are: Australian National University (ANU) Hydrogen Generation by Electro-Catalytic Systems – $615,682.
The Commission also approved grants for the operation of a hydrogen fueling station, biofuel production, geothermal exploration and rooftop solar for schools. The seven awards approved will fund applied R&D projects that will develop utility-scale renewable energy generation technologies. First NorCal Retail H 2 Refueling Station Open.
Researchers at The Ohio State University have developed a novel strategy to improve the efficiency and performance of non-aqueous lithium-oxygen (Li-air) batteries. By utilizing solar energy, the device can be charged with a ‘negative’ overpotential, which is otherwise thermodynamically impossible. —Yu et al.
Researchers in China led by a team from Fudan University have demonstrated the electrochemical reduction of CO 2 toward C 2+ alcohols with a faradaic efficiency of ~70% using copper (Cu) catalysts with stepped sites. C 2+ alcohols are desirable due to their high energy densities and large global market capacities.
Solid-oxide-fuel-cell manufacturer Bloom Energy is entering the commercial hydrogen market by introducing hydrogen-powered fuel cells and electrolyzers that produce renewable hydrogen. Bloom is capitalizing on this technology by taking terrestrial renewable power and producing hydrogen using solid oxide electrolyzers.
Energy Research Center at RWTH Aachen University, E.ON electric utility company, battery manufacturers Exide and beta-motion and inverter manufacturer SMA Solar Technology AG (SMA) have joined forces to build the first multi-technology, modular large-scale 5MW battery storage system. Batteries Power Generation Solar Wind'
The home, located on the West Village campus of the University of California, Davis, is capable of producing more energy on-site from renewable sources than it consumes annually, including enough energy to power a Honda Fit EV for daily commuting. Honda Smart Home is expected to generate a surplus of 2.6
SoCalGas) introduced an innovative new solar-powered hydrogen generation system during the California Air Resources Board Technology Expo and Symposium at the University of California, Riverside. STARS converts a record-setting 70% of solar energy into chemical energy. Southern California Gas Co. Earlier post.).
A team at George Washington University led by Professor Stuart Licht has simultaneously co-generated hydrogen and solid carbon fuels from water and CO 2 using a mixed hydroxide/carbonate electrolyte in a “single-pot” electrolytic synthesis at temperatures below 650 ?C. Earlier post , earlier post.) Earlier post , earlier post.) (In
In recognition of the importance of teams in energy research, the EFRC program brings together researchers from multiple disciplines and institutions—including universities, national laboratories, industry, and nonprofit organizations—and combines them into synergistic, highly productive teams.
The flagship project MethanQuest was launched in September 2018, and on it a total of 29 partners from research, industry and the energy sector have come together to work on processes for producing hydrogen and methane from renewables and for using them to achieve climate-neutral mobility and power generation.
Researchers at the University of Melbourne (Australia) have demonstrated a method of direct hydrogen production from air— in situ capture of freshwater from the atmosphere using hygroscopic electrolyte and subsequent electrolysis powered by solar or wind with a current density up to 574 mA cm ?2.
The US Department of Energy (DOE) launched the Cadmium Telluride Accelerator Consortium (CTAC) —a $20-million initiative designed to make cadmium telluride (CdTe) solar cells less expensive, more efficient and develop new markets for solar cell products. efficiency in converting sunlight into electricity. competitiveness.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content