Remove Renewable Remove Sodium Remove Solar
article thumbnail

Na-ion battery developer Faradion collaborating with battery manufacturer AMTE Power

Green Car Congress

a leader in non-aqueous sodium-ion battery technolog ( earlier post ), announced a collaboration which combines Faradion’s IP with AMTE Power’s design and manufacturing capabilities. AMTE Power has branded its sodium-ion product “Ultra Safe” due to its improved safety and enhanced thermal stability.

article thumbnail

New long-duration, extended capacity Na-Al battery design for grid storage

Green Car Congress

Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. of peak charge capacity.

article thumbnail

New high energy, highly stable cathode for sodium-ion batteries

Green Car Congress

F 0.7 , for sodium-ion (Na-ion) batteries (NIBs). Large-scale energy storage systems are needed to deal with intermittent electricity production of solar and wind. The abundance and low cost of Na in the earth will become advantageous when a large amount of material is demanded for renewable energy solutions. Click to enlarge.

Sodium 292
article thumbnail

New liquid alloy electrode significantly lowers operating temperature of sodium-beta batteries; improved performance

Green Car Congress

Researchers at Pacific Northwest National Laboratory (PNNL) have devised an alloying strategy that enables sodium-beta batteries to operate at significantly lower temperatures. The new electrode enables sodium-beta batteries to last longer, helps streamline their manufacturing process and reduces the risk of accidental fire.

Sodium 218
article thumbnail

Xcel Terms First Phase of Sodium-Sulfur Battery Wind Energy Storage Test Project Successful

Green Car Congress

In October 2008, Xcel began testing a one-megawatt sodium-sulfur (NaS) battery ( earlier post ) to demonstrate its ability to store wind energy and move it to the electricity grid when needed. Results also indicate that this technology may be applicable for solar energy. They are able to store about 7.2

article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. The rise of renewable solar and wind power is demanding sustainable storage technologies using components that are inexpensive, Earth-abundant and environmental friendly.

Sodium 186
article thumbnail

PARC building cleantech portfolio; co-extrusion printing of novel battery electrodes and carbon-neutral renewable liquid fuels from atmospheric CO2

Green Car Congress

Schematic of the HP-BPMED device used in the renewable fuels research. (a) The first application of this technique has been for silver gridlines on the front surface of solar cells. PARC is developing a non-biological approach for producing liquid fuels from renewable energy, air, CO 2 and water. b) Detailed view of the stack.

Renewable 236