This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Audi has included the economical and efficient use of water as a key aspect of its Mission:Zero environmental program. The company plans to keep its own water consumption to a minimum and stop using drinking water in vehicle production in the future. Drinking water is a valuable and scarce resource: 2.2
A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage. Diess et al.
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. The conversion rate reaches 32.9 ± 1.38
Researchers at Uppsala University have developed photocatalytic composite polymer nanoparticles (“polymer dots”) that show promising performance and stability for the production of hydrogen from water and sunlight. Since polymer dots (Pdots) are so tiny, they are evenly distributed in water.
Researchers in Spain have developed hydrogen production without contact electrodes via water electrolysis mediated by the microwave-triggered redox activation of solid-state ionic materials at low temperatures ( Nature Energy. In thermochemical cycles, the highly energy-demanding splitting of water molecules (?H Serra et al.
Researchers have developed a nickel-stabilized, ruthenium dioxide (Ni-RuO 2 ) anode catalyst for proton exchange membrane (PEM) water electrolysis. The Ni-RuO 2 catalyst shows high activity and durability in acidic OER for PEM water electrolysis. Illustration by Zhen-Yu Wu. 2 , suggesting potential for practical applications.
Electrolytic hydrogen production powered by renewable energy is seen as an environmentally friendly means to ameliorate global climate and energy problems. Both half reactions of water electrolysis—hydrogen and oxygen evolution—are unfortunately slow and require a lot of power. Zhang, S.L., and Lou, X.W.
Minneapolis-based Xcel Energy will work with Idaho National Laboratory to demonstrate a system that uses a nuclear plant’s steam and electricity to split water. It builds on a project launched last year to demonstrate how hydrogen production facilities could be installed at operating nuclear power plants. Earlier post.) Prairie Island.
A team led by researchers at Tokyo Institute of Technology (Tokyo Tech) have discovered a new bimetallic electrocatalyst for the oxygen evolution reaction (OER) in electrochemical water splitting: CaFe 2 O 4.
Photoelectrochemical (PEC) water splitting based on solar energy is one promising approach for the production of green hydrogen. However, its widespread application is limited by a lack of efficient photoanodes for catalyzing the rate-limiting oxygen evolution reaction (OER), an important reaction in PEC water splitting.
million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. The 50 kW demonstration will prove that high-efficiency syngas production can be achieved at low capital-cost using GRC’s unique thermal-spray-based SOCC technology.
Researchers led by engineers at The University of Texas at El Paso (UTEP) have proposed a low-cost, cactus-inspired nickel-based material to help split water more cheaply and efficiently. Nickel, however, is not as quick and effective at breaking down water into hydrogen. who led the study. Every day, I passed this same plant.
The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. This testing has shown a hydrogen production and efficiency benefit from exposing certain photocatalyst materials to concentrated light and heat. one level closer to a commercially deployable product.
In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals. Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Credit: DICP. —Wang et al.
SoCalGas) and H2U Technologies are testing a new electrolyzer, called the Gramme 50, for the production of green hydrogen. Design specs for the Gramme 50 include a production rate of 30~50 Nm 3 /hr with a power consumption range of 5~7 kWh/Nm or 150~350 kW. These efforts could help drive down hydrogen production costs.
Researchers from the Chinese Academy of Sciences and Tsinghua University have used a gallium, indium, tin and bismuth alloy to generate hydrogen, when placed in contact with an aluminum plate immersed in water. Hydrolysis of active metals is a widely known hydrogen production approach. The hydrogen is then used in a PEM fuel cell.
Ultra Safe Nuclear Corporation (USNC), a US-based vertical integrator of nuclear technologies and services, Hyundai Engineering and SK E&C are teaming up to conduct research and development for carbon-free hydrogen production. It is also participating in a government-led green hydrogen production demonstration project.
Researchers at the University of Melbourne (Australia) have demonstrated a method of direct hydrogen production from air— in situ capture of freshwater from the atmosphere using hygroscopic electrolyte and subsequent electrolysis powered by solar or wind with a current density up to 574 mA cm ?2.
Conventional water electrolysis for the production of hydrogen faces technological challenges to improve the efficiency of the water-splitting reaction for the sluggish oxygen evolution reaction (OER). Oxygen and hydrogen are generated during a water electrolysis reaction (top right).
Toyota has commissioned Victoria’s first commercial-grade permanent hydrogen production, storage and refuelling facility at its former manufacturing site at Altona in Melbourne’s west. The Toyota Hydrogen Center is a step in addressing this challenge.
As water-splitting technologies improve, often using porous electrode materials to provide greater surface areas for electrochemical reactions, their efficiency is often limited by the formation of bubbles that can block or clog the reactive surfaces. As a result, there were substantial changes of the transport overpotential. 2021.02.015.
China-based Dongfang Electric Corporation (DEC) reported successful testing of non-desalinated seawater electrolysis technology for hydrogen production powered by offshore wind. The floating hydrogen production platform Dongfu One is sited in an offshore wind farm in East China’s Fujian province. —Xie et al.
Canada-based Aurora Hydrogen, a company developing emission-free hydrogen production technology, has raised $10 million in Series A funding led by Energy Innovation Capital. There is an accompanying need to develop new low-cost and low-carbon technologies for hydrogen production.
A team of researchers led by Loretta Roberson, associate scientist at the Marine Biological Laboratory, Woods Hole, has installed the first seaweed farm in Puerto Rico and US tropical waters. Puerto Rico has stable warm temperatures and ample sunlight year-round, as well as a wide range of exposure to prevailing winds and waves.
In a review paper published in the journal ChemSusChem , researchers from Australia’s CSIRO conclude that the combination of synthetic biology and materials chemistry will provide many viable options to allow the use of nitrogenase for energy applications, such as the production of green ammonia for use as a preferred liquid carrier for hydrogen.
Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. of hydrogen is currently produced via water electrolysis and only a fraction of this production is powered by renewable energy.
Topsoe intends to construct the world’s largest and most advanced industrial-scale electrolyzer production plant. To produce hydrogen, it utilizes electricity to split water molecules (H 2 O) into hydrogen (H 2 ) and oxygen (O 2 ). This is accomplished by three components: an anode, a cathode, and an electrolyte.
Evonik has now developed a novel anion exchange membrane (AEM), which should contribute to the breakthrough of electrolytic production of hydrogen. CHANNEL stands for Cost-efficient Hydrogen production unit based on ANionN exchange membrane Electrolysis.
Hydrogen has emerged as an important carrier to store energy generated by renewable resources, as a substitute for fossil fuels used for transportation, in the production of ammonia, and for other industrial applications. Electrolysis needs electricity to split water into hydrogen and oxygen. Illustration by Patrick Davenport, NREL.
Methanol fuel cell developer and manufacturer Blue World Technologies ( earlier post ) is starting limited production—the first step in commercializing its methanol fuel cell technology. Methanol reforming is a relatively simple process that converts a mix of methanol and water into a hydrogen-rich gas.
and Iwatani Corporation announced that Fukushima Hydrogen Energy Research Field (FH2R), which had been under construction in Namie town, Fukushima Prefecture since 2018, has been constructed with a solar-energy-powered 10MW-class hydrogen production unit, the largest in the world, at the end of February.
Honeywell has developed new catalyst-coated membrane (CCMs) technology for green hydrogen production and will further test the technology with electrolyzer manufacturers.
PEUGEOT has become one of the first manufacturers to offer in series production, from 2021 onwards in the compact utility van segment, an electric version powered by a hydrogen fuel cell in addition to its battery-electric version. It emits only water vapor through the exhaust pipe.
Researchers from the University of Toronto’s Faculty of Applied Science & Engineering and Fujitsu have applied quantum-inspired computing to find the promising, previously unexplored chemical family of Ru-Cr-Mn-Sb-O 2 as acidic oxygen evolution reaction catalysts for hydrogen production. A paper on their work appears in the journal Matter.
As of 2026, Audi will only launch all-electric models onto the global market, gradually phasing out production of its combustion models by 2033. Based on this clear decision made as part of its Vorsprung 2030 corporate strategy, Audi is now taking steps to prepare its global facilities for the production of all-electric cars.
Heliogen and Bloom Energy have successfully demonstrated the production of green hydrogen by integrating the companies’ technologies: Heliogen’s concentrated solar energy system and the Bloom Electrolyzer. By using less electricity, hydrogen production is more economical and accelerates adoption. Source: Heliogen. Source: Heliogen.
The water depth ranges from 15 meters to 60 meters and is constructed to test different types of devices. The Yongsoo plant is a 500 kW fixed oscillating water column (OWC)-type wave energy converter. The test site has five berths, with a total capacity of 5 MW. Diagram of the KRISO WETS. Source: OES.
BMW has begun fuel cell system production at the company’s competence center for hydrogen in Munich. By commencing small-scale production of fuel cells today, we are demonstrating the technical maturity of this type of drive system and underscoring its potential for the future.
which has developed its own integrated subcritical-water organic-waste power-generation system (ISOP) system, which decomposes organic substances using subcritical-water-treating technology and ultimately produces green energy products such as biofuels. NYK Line has invested in Japan-based Sustainable Energy Co.
bp signed a memorandum of understanding (MoU) with the Government of Egypt under which bp will explore the potential for establishing a new green hydrogen production facility in the country. Green hydrogen is produced by the electrolysis of water, powered by renewable energy.
Building on the company’s expertise in low-carbon ammonia production, clean ammonia will be manufactured using innovative technology to achieve at least a 90% reduction in CO 2 emissions. If approved, construction of the approximately US$2-billion facility would begin in 2024 with full production expected by 2027. Source: Nutrien.
The hydrogen production rate achieved in this work represents a really encouraging step towards the commercial realization of this technology. Now, the team has published the results of their scaled-up, efficient, and multi-product process under real-world conditions in an open-access paper in the same journal.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content