This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
which has developed its own integrated subcritical-water organic-waste power-generation system (ISOP) system, which decomposes organic substances using subcritical-water-treating technology and ultimately produces green energy products such as biofuels. NYK Line has invested in Japan-based Sustainable Energy Co.
At the hubs, which can be built at or near landfills, Raven SR will convert mixed and multiple organic wastes, including municipal solid waste, greenwaste, food waste, medical, paper, etc. This permits the control of the rotary reformer when there is water content or chemical makeup variation in the feedstock, such as in MSW.
Alfa Laval is introducing the E-PowerPack waste heat recovery system for ships. Able to convert waste heat directly into electrical power, the E-PowerPack uses Organic Rankine Cycle (ORC) technology to reduce ship fuel consumption and CO 2 emissions. —Danny Ingemann, Head of Global Sales responsible for the product.
Korea’s Ulsan National Institute of Science and Technology (UNIST) have developed a novel process for the production of hydrogen using various types of biomass, including lignin, as an efficient alternative to water oxidation as an electron source. Conventionally, water is considered a cheap and clean source of electrons; 2H 2 O ?
With this zero-waste car, the team wants to show that waste can be a valuable material with a multitude of applications. Luca, the world’s first Zero-Waste car. During the UBQ conversion process, the unsorted residual waste stream is reduced into its more basic natural components. Photo by Bart van Overbeeke.
A new approach developed by researchers at the Norwegian University of Science and Technology (NTNU) could alleviate that situation a bit by using waste heat from other industrial processes. Energy experts say that the waste heat from Norway’s businesses and industries is the equivalent of 20 TWh of energy. 1 ) at 40 ?C, 1 (2.6 ± 1.3
The Rice lab of chemist James Tour has successfully extracted valuable rare earth elements (REE) from waste at yields high enough to resolve issues for manufacturers while boosting their profits. The activation strategy is feasible for various wastes including coal fly ash, bauxite residue, and electronic waste.
Electrolytic hydrogen production powered by renewable energy is seen as an environmentally friendly means to ameliorate global climate and energy problems. Both half reactions of water electrolysis—hydrogen and oxygen evolution—are unfortunately slow and require a lot of power. Zhang, S.L., and Lou, X.W.
thyssenkrupp’s proprietary water electrolysis technology for the production of. conducted the necessary tests jointly in an existing water electrolysis plant operating as part of the Carbon2Chem project ( earlier post ) in Duisburg. In the following year the production of ammonia succeeded. thyssenkrupp and E.ON
Berlin-based Graforce Hydro GmbH, the developer of a plasma electrolyzer—the Plasmalyzer —is applying its technology for the highly efficient generation of hydrogen from industrial wastewater. The current Plasmalyzer offers highly efficient water splitting. Only purified water and oxygen remain as wasteproducts.
Metsä Fibre, part of Metsä Group, and Veolia recently signed a long-term partnership agreement on the refining of crude methanol generated in pulp production at the Äänekoski bioproduct mill into commercial biomethanol. The Kraft pulping process transforms wood chips into pulp, from which a broad range of paper products are made.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.
The facility was developed and built in partnership with the Tokyo Metropolitan Government, TODA Corporation, TOKYU Construction, CHIYODA Kenko and researchers at Tokyo University of Science to help Japan meet growing demand for renewable hydrogen while demonstrating a new pathway for sustainable disposal of waste. Ways2H, Inc.
In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals. Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Credit: DICP. —Wang et al.
The energy system will power and heat Raven SR’s S-Series hydrogen production facility at a sanitary landfill in Richmond, California. At the site, landfill gas (LFG) will be the primary fuel to provide power for the non-combustion process that converts waste to hydrogen. Earlier post.). This project will initially process up to 99.9
Engineers at the University of Pittsburgh Swanson School of Engineering are using membrane distillation technology to enable drillers to filter and reuse the produced water in the oil and gas industry, in agriculture, and other beneficial uses. The method is already being tested in Texas, North Dakota, and most recently in New Stanton, Pa.
A team from the University of Cordoba in Spain and the University of Tehran in Iran has been searching for ways to increase hydrogen production by using microorganisms, specifically microalgae and bacteria. This study is a proof of concept for the synergetic biohydrogen production in alga-bacteria co-cultures. —Fakhimi et al.
Raven SR, a US-based renewable fuels company ( earlier post ), plans to build a waste-to-hydrogen production facility in Aragón, Spain, following the opening of its subsidiary Raven SR Iberia in Zaragoza, announced earlier this month. Raven SR plans to bring the modular project online in 2023.
Audi has put a new service-water supply center into operation at the Ingolstadt site. In this way, Audi will saves up to 500,000 cubic meters of fresh water each year. The heart of the service-water supply center is a membrane bioreactor (MBR). The heart of the service-water supply center is a membrane bioreactor (MBR).
Lithium Australia NL reported that its wholly owned subsidiary VSPC Ltd has successfully produced Li-ion battery cathode material, and Li-ion batteries (LIBs), from tri-lithium phosphate produced directly from mine waste using the SiLeach process. LFP and batteries from waste. SiLeach background. Reactions occur rapidly at about 90 ?
Topsoe and Steeper Energy , a developer of biomass conversion technologies, signed a global licensing agreement for a complete waste-to-fuel solution. The end-products include Sustainable Aviation Fuel (SAF), marine biofuel, and renewable diesel from waste biomass.
A Korean research team has developed a technology that can be used to mass-produce aviation-grade fuels from wood wastes. Large volumes of lignin are generated as waste in the pulping processes that are used to produce paper. Despite the digital revolution, a sharp increase in global parcel volumes supports the global paper production.
Energy Vault’s advanced gravity energy storage solutions are based on the proven physics and mechanical engineering fundamentals of pumped hydroelectric energy storage, but replace water with custom-made composite blocks, or “mobile masses”, which do not lose storage capacity over time. barrel per ton of feedstock.
Methanol fuel cell developer and manufacturer Blue World Technologies ( earlier post ) is starting limited production—the first step in commercializing its methanol fuel cell technology. Methanol reforming is a relatively simple process that converts a mix of methanol and water into a hydrogen-rich gas.
Researchers at the University of Oregon have advanced the effectiveness of the catalytic water dissociation reaction in bipolar membranes. The technology behind bipolar membranes, which are layered ion-exchange polymers sandwiching a water dissociation catalyst layer, emerged in the 1950s. —Shannon Boettcher.
Rio Tinto will deploy the world’s first fully autonomous water trucks at its $2.6-billion The new vehicles, primarily used for dust suppression on site, will enhance productivity by enabling mine operations to track water consumption digitally and reduce waste.
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
Since forming in 2013, Argent Materials, a San Francisco Bay Area recycler of concrete and asphalt, and supplier of aggregate such as crushed rock, entry, cutback, sand, backfill and base rock for construction projects, has diverted more than a billion pounds of waste from local landfills. Our experience has been positive.
The UK Department for Transport has shortlisted 8 industry-led projects to receive a share of £15 million (US$21 million) in the Green Fuels, Green Skies (GFGS) competition for the development of sustainable aviation fuels (SAF) production plants in the UK. Research indicates that by 2040 the SAF sector could generate between £0.7
Sinopec’s hydrogen production plant has the advantages of covering a small area, having a short construction time, and having a green, environmentally friendly production process. The storage and transportation cost of methanol is also much lower than hydrogen, making methanol-to-hydrogen an attractive hydrogen production technology.
The pilot plant was designed and tested by researchers of Karlsruhe Institute of Technology (KIT) and the Research Centre of the German Technical and Scientific Association for Gas and Water (DVGW). Biogas facilities produce renewable gas mainly by fermenting biological waste. The technology can also be applied to power-to-gas systems.
Domestic production of lithium, the lightest of elemental metals, is considered a priority for the US. These plants pump hot water from geothermal deposits and use it to generate electricity. The technique is very sensitive to hydrogen atoms, making it ideal for studying water. Credit: Oak Ridge National Laboratory.
a waste-to-fuels company, closed a $20-million strategic investment from Chevron USA, ITOCHU, Hyzon Motors and Ascent Hydrogen Fund. Raven SR plans to build modular waste-to-green hydrogen production units and renewable synthetic fuel facilities initially in California and then worldwide. Raven SR Inc., Earlier post.).
Researchers from the University of Toronto’s Faculty of Applied Science & Engineering and Fujitsu have applied quantum-inspired computing to find the promising, previously unexplored chemical family of Ru-Cr-Mn-Sb-O 2 as acidic oxygen evolution reaction catalysts for hydrogen production. A paper on their work appears in the journal Matter.
As of 2026, Audi will only launch all-electric models onto the global market, gradually phasing out production of its combustion models by 2033. Based on this clear decision made as part of its Vorsprung 2030 corporate strategy, Audi is now taking steps to prepare its global facilities for the production of all-electric cars.
The BMW Group is speeding up the shift towards electromobility and strengthening its global network for production of electrified vehicles. The new assembly in Munich will be built on the site currently used for engine production. The expansion of electromobility in the production network continues. Sustainability in production.
The contract is expected to make Air France KLM DGF’s largest European airline customer and lays the groundwork for expansion of this commercial relationship as DGF scales up production at the Louisiana and additional planned SAF production plants to be located in the United States and beyond.
With the goal of boosting the circular economy, energy efficiency and emissions reduction, SEAT is currently working on the Life Methamorphosis project to obtain biomethane from previously selected waste and animal slurry from a farm in Lleida.
Eni and RenOils, the Italian national vegetable and animal oils and fats Consortium established in 2016 to ensure the correct management of the collection, transport, storage, processing and reuse of vegetable oils and animal fats, are promoting the recovery of used cooking oils (UCO) for biofuel production.
Raven SR, a renewable fuels company; Chevron New Energies, a division of Chevron USA; and Hyzon Motors are collaborating to commercialize operations of a green waste-to-hydrogen production facility in Richmond intended to supply hydrogen fuel to transportation markets in Northern California.
The M-Series units are methanol reformers that use water plus methanol to make hydrogen. The units uses two input streams (methanol/water mix and combustion air) and produces two output streams (product H 2 and combustion exhaust). Source: e1.
A new way of anchoring individual iridium atoms to the surface of a catalyst significantly increased its efficiency in splitting water molecules, scientists from the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University reported in an open-access paper in Proceedings of the National Academy of Sciences (PNAS). …we
reports that it has achieved full conversion ( 99% + ) of king grass cellulosic material to water soluble sugars on a repeatable basis. Blue Biofuels, Inc. This conversion occurs with a reaction time of less than one minute. This achievement was accomplished with the company’s upgraded 4 th generation CTS 2.0
The biomethane used as raw material was obtained from urban solid waste. In this way, Repsol replaces conventional natural gas with biomethane of sustainable origin to produce renewable hydrogen in its industrial complexes and thus decarbonize its processes and products. GW in 2030.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content