This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Hydrogen is produced in a catalytic hydrolysis reaction of sodium borohydride (NaBH 4 ) with ruthenium powder as a catalyst. The system consists of two main chambers: an upper chamber with granulated sodium borohydride powder and a lower reaction chamber with a solution of water and catalyst. Zakhvatkin et al. —Zakhvatkin et al.
(CATL) unveiled its first-generation sodium-ion battery, together with its AB battery pack solution—which is able to integrate sodium-ion cells and lithium-ion cells into one pack. The sodium-ion battery has a similar working principle to the lithium-ion battery; sodium ions shuttle between the cathode and anode.
Natron Energy, a manufacturer of sodium-ion batteries, and Clarios International Inc., a manufacturer of low-voltage advanced battery technologies for mobility, will collaborate to manufacture the first mass-produced sodium-ion batteries. Natron has spent 10 years developing sodium-ion battery chemistry for mass manufacturing.
Cheap and abundant, sodium is a promising candidate for new battery technology. However, the limited performance of sodium-ion batteries has hindered large-scale application. Sodium-ion batteries (NIBs) have attracted worldwide attention for next-generation energy storage systems. A paper on the work appears in Nature Energy.
Uppsala-based sodium-ion battery company Altris AB ( earlier post ) raised €9.6 The funding secures Altris’ production scale-up of the company’s innovative battery cathode material, Fennac, to 2,000 tonnes, enabling 1 GWh of sustainable batteries and further research and development of sodium-ion batteries to take place.
In a paper in Nature Materials , a team of researchers from BASF SE and Justus-Liebig-Universität Gießen report on the performance of a sodium-air (sodium superoxide) cell. Their work, they suggest, demonstrates that substitution of lithium by sodium may offer an unexpected route towards rechargeable metal–air batteries.
With the keel laying, construction has begun at Next Generation Shipyards in the Netherlands of Neo Orbis , a 20m fuel-cell hybrid port vessel using sodium borohydride as a solid-state hydrogen storage medium. The then DaimlerChrysler used Millenium Cell sodium borohydride it its Natrium fuel cell concept car, introduced in 2001.
Following an investigation into the cause of a sodium-sulfur battery fire on 21 September 2011 at Mitsubishi Materials Corp.’s will begin collecting its existing sodium-sulfur (NaS) batteries from customers to make safety modifications. In the aftermath of the fire, NGK had ceased production of the NaS batteries.
a leader in non-aqueous sodium-ion battery technolog ( earlier post ), announced a collaboration which combines Faradion’s IP with AMTE Power’s design and manufacturing capabilities. AMTE Power has branded its sodium-ion product “Ultra Safe” due to its improved safety and enhanced thermal stability. Safety and Transportation.
UK-based Faradion, a developer of sodium-ion battery technology ( earlier post ), and Phillips 66 have launched a new technical collaboration to develop lower-cost and higher-performing anode materials for sodium-ion batteries. Earlier post.).
GE will invest an additional $70 million to expand its sodium-halide battery manufacturing plant in New York, which is part of the company’s new Energy Storage business. —GE Chairman & CEO Jeff Immelt.
Produced water from coal-bed natural gas (CBNG) production may contain sodium bicarbonate (NaHCO 3 ) at concentrations that can harm aquatic life, according to a new study by the US Geological Survey; Montana Fish, Wildlife and Parks; the Bureau of Land Management and the US Environmental Protection Agency.
Solid-state sodium-ion battery company LiNa Energy has closed out a £3-million (US$3.4-million) LiNA will also build a presence in India where LiNa has signed an MoU with Social Alpha to optimise product development for the India market and oversee battery cell testing and future pilot projects. Earlier post.)
F 0.7 , for sodium-ion (Na-ion) batteries (NIBs). Large-scale energy storage systems are needed to deal with intermittent electricity production of solar and wind. —can function as an excellent cathode for rechargeable sodium-ion batteries with a high energy density. Ragone plot for the new Na 1.5 Credit: ACS, Park et al.
Swedish battery materials company Altris AB, which specializes in producing highly sustainable cathode materials for rechargeable sodium batteries, has officially opened its first office in China. As interest in Altris’ product grows in China, the local sales and support team will expand to match customer’s needs. V vs sodium.
A typical example is the use of a dilute aqueous sodium hydroxide (NaOH) solution to absorb SO 2 from flue gas, forming an aqueous Na 2 SO 3 solution. Alternatively, oxidation of an aqueous Na 2 SO 3 solution can be carried out for the production of high purity clean hydrogen fuel. Huang et al. Huang et al. Cunping Huang, Clovis A.
Solid-state sodium-ion battery company LiNa Energy ( earlier post ) successfully completed an independent demonstration of its lithium-free sodium batteries for energy storage systems with commercial partner ion Ventures.
GE’s Energy Storage business announced $63 million in new Durathon sodium-halide battery orders since the business launched in July. GE’s Durathon battery technology works by employing sodium chemistry to capture excess energy from the diesel fuel generators. Earlier post.) —Prescott Logan, General Manager, GE Energy Storage.
Blackstone Technology GmbH may begin commercialization of 3D-printed solid-state sodium-ion batteries as early as 2025. The results of the development project will form the basis for the market-ready product. To implement this, €32 million will be invested in a pilot plant at the production site in Döbeln and in extensive developments.
A team from the University of New South Wales (Australia) reports on a novel core-shell strategy leading to high and stable hydrogen absorption/desorption cycling for sodium borohydride (NaBH 4 ) under mild pressure conditions (4 MPa) in an open-access paper in the journal ACS Nano. With a high storage capacity (10.8
CATL has begun manufacturing its second generation sodium ion batteries with full production expected in 2027. The post CATL Will Put Its Second-Generation Sodium-Ion Batteries Into Production In 2025 appeared first on CleanTechnica.
Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. It is a variation of a sodium-metal halide battery. of peak charge capacity.
Solid-state sodium battery company LiNa Energy ( earlier post ) has closed out a £3.5-million LiNa Energy, a spin-out from Lancaster University, established in 2017, is commercializing a safe, cobalt- and lithium-free solid-state sodium battery. million (US$4.8-million) —Dr Gene Lewis, CEO of LiNa Energy.
The hybrid systems research team at GE Global Research has successfully demonstrated a dual battery system for an electric transit bus, pairing a high-energy density sodium metal halide battery with a high-power lithium battery. Sodium batteries are on the opposite side of the spectrum. Click to enlarge.
Tests conducted by Titirici Group , a multidisciplinary research team based at Imperial College London, have found that a novel carbon nanotube electrode material derived from CO 2 —produced by Estonian nanotech company UP Catalyst ( earlier post )—enhances the cyclability of sodium-ion batteries.
RAL researchers are proposing a new process for the decomposition of ammonia to release hydrogen that involves the stoichiometric decomposition and formation of sodium amide from Na metal. To date, very few candidates show potential beyond that of the seminal work on titanium-doped sodium alanate. Credit: ACS, David et al. g of NaNH 2.
Sodium-ion batteries (Na-ion, NIBs) are seen as an alternative to lithium-ion batteries for large-scale applications due to their lower cost and abundant supply of sodium. We also demonstrate a battery with the stibnite–graphene composite that is free from sodium metal, having energy density up to 80? Mason, Sudip K.
Hina Battery's production line, located in Fuyang, Anhui province, is the first phase of its 5 GWh project. The post World's first GWh-class sodium-ion battery production line sees first product off line appeared first on CnEVPost. For more articles, please visit CnEVPost.
CATL and BYD's sodium-ion batteries to be put into mass production will both be a mix of sodium-ion and lithium-ion batteries, according to local media. Image credit: CnEVPost) BYD's progress in mass production of sodium-ion batteries does not seem to differ much from CATL's, although it has not announced the latest progress.
Tokuyama Corporation and Toyota Motor Corporation (Toyota) have commenced verification tests, using by-product hydrogen, of a stationary fuel cell generator (FC generator) that makes use of the fuel cell system (FC system) installed in the Mirai Fuel Cell Electric Vehicle (FCEV).
Penn State researchers have proposed cold sintering as an improved method of solid-state battery production that enables multi-material integration for better batteries. One of the larger issues for solid-state batteries making the transition from laboratory to the market is the challenges inherent in their production.
Researchers in Germany have produced a hydrocarbon-based bio-crude and non-condensable gases from the thermal degradation of free fatty acids and animal fat in the presence of water and sodium carbonate (Na 2 CO 3 , a sodium salt of carbonic acid commonly used as a water softener). The gaseous products ranged from 25 wt% to 30 wt%.
In April, the company completed the diesel hydrotreater conversion, which will ramp up to 8,000 bbl/d (120 million gallons per year) of renewable diesel production by the third quarter of 2021. Upon completion, the facility will have more than 50,000 bbl/d (800 million gallons per year) of renewable fuel production capacity.
Under their continued work with ARPA-E, EaglePicher will focus its research on improving scalability for their Sodium-Beta (Na-β) battery by developing an inexpensive stacked design to improve integration in renewable and grid storage applications. Overview of the original EPT/PNNL project on planar sodium batteries.
Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.
Sodium-ion battery cathode producer Altris AB ( earlier post ) signed a deal with AB Sandvik Materials Technology to house the company’s first industrial-scale manufacturing facility in Sandviken. The site also allows for upscaling of production in the years to come. V vs sodium.
In the passenger car segment, sodium-ion batteries can generally meet the needs of models with a range of up to 400 kilometers, a CATL executive previously said. CATL's sodium-ion batteries are not far from starting to be installed in vehicles, after the Chinese power battery giant unveiled the new batteries in July 2021.
Two electric car models powered by sodium ion batteries went into production in China in late December. The post Electric Cars Powered By Sodium Ion Batteries Go On Sale In China appeared first on CleanTechnica. It this the start of a trend?
The nanosized crystalline primary particles and high surface areas enable an increased rate of photocatalytic hydrogen production from water and extended working life. They then treat the material with a sodium potassium alloy. Micrograph of mesoporous silicon with sodium chloride and potassium chloride salts embedded in the matrix.
Swedish sodium-ion battery developer Altris presented a pure Prussian White cathode material with a capacity of 160 mAh/g, making it the highest capacity declared to date. Prussian White is a framework material consisting of sodium, iron, carbon and nitrogen (Na x Fe[Fe(CN) 6 ] with x>1.9). Earlier post.) Earlier post.)
British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Sodium-ion intercalation batteries—i.e., Oxford University was also a partner. Earlier post.)
The sodium-ion battery manufacturer Natron Energy has started commercial-scale operations at its sodium-ion battery manufacturing facility in Holland, Michigan. Natron’s milestone marks the first-ever commercial-scale production of sodium-ion batteries in the U.S.
Professor John Goodenough, the inventor of the lithium-ion battery, and his team at the University of Texas at Austin have identified a new cathode material made of the nontoxic and inexpensive mineral eldfellite (NaFe(SO 4 ) 2 ), presenting a significant advancement in the quest for a commercially viable sodium-ion battery. Earlier post.)
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content