Remove Powered Remove Sodium Remove Universal
article thumbnail

ion Ventures and LiNa Energy conclude successful test of solid-state sodium-nickel battery platform

Green Car Congress

ion Ventures, a modern utility and energy storage infrastructure specialist, and LiNa Energy , a solid-state battery technology developer, concluded their first successful trial of LiNa’s proprietary solid-state sodium-nickel battery platform at an undisclosed location in South East England last week.

Sodium 497
article thumbnail

U Alberta team develops hybrid sodium-ion capacitor; intermediate in energy & power between ultracaps and batteries

Green Car Congress

A team led by researchers from the University of Alberta (Canada) Scientists has developed a hybrid sodium-ion capacitor (NIC) using active materials in both the anode and the cathode derived entirely from peanut shells—a green and highly economical waste globally generated at more than 6 million tons per year. Batteries'

Sodium 278
article thumbnail

Faradion and Phillips 66 to develop lower cost and higher-performing sodium-ion battery materials

Green Car Congress

UK-based Faradion, a developer of sodium-ion battery technology ( earlier post ), and Phillips 66 have launched a new technical collaboration to develop lower-cost and higher-performing anode materials for sodium-ion batteries. Earlier post.).

Sodium 269
article thumbnail

Researchers identify AsC5 as promising anode material for sodium-ion batteries

Green Car Congress

Researchers at Northeastern University in Shenyang, China, have identified a novel carbon arsenide (AsC 5 ) monolayer as a promising anode material for sodium-ion batteries (NIBs). A paper on their work is published in Journal of Power Sources. —Lu et al. —Lu et al. 2023.233439

Sodium 284
article thumbnail

SiGNa Chemistry Demonstrates Sodium Silicate-Based Hydrogen Generation System for Portable Fuel Cells

Green Car Congress

Prototype sodium silicate hydrogen generation system as presented earlier this year at DOE merit review. The H300 utilizes real-time swappable cartridges that generate hydrogen on demand using SiGNa’s proprietary sodium silicide (NaSi) powder. Sodium-Silica-Gel: 2Na-SG + H 2 O → H 2 + Na 2 Si 2 O 5. Click to enlarge.

Sodium 230
article thumbnail

Expanded graphite as a superior anode for sodium-ion batteries

Green Car Congress

Researchers at the University of Maryland, with colleagues at the University of Illinois at Chicago, report on a new method for expanding graphite for use as a superior anode for sodium-ion batteries in a paper in Nature Communications. to enlarge the interlayer lattice distance to accomodate the larger sodium ions.

Sodium 210
article thumbnail

WUSTL team develops high-power direct borohydride fuel cells; double the voltage of conventional H2 fuel cells

Green Car Congress

Engineers at the McKelvey School of Engineering at Washington University in St. Louis (WUSTL) have developed high-power direct borohydride fuel cells (DBFC) that operate at double the voltage of conventional PEM hydrogen fuel cells. times higher power density at 1.5 The high peak power density of 890 mW cm ?2 V in orange.

Fuel 397