This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
A modeling study by researchers at MIT projects that 5 billion (52%) of the world’s projected 9.7 billion people in 2050 will live in water-stressed areas. The researchers also expect about 1 billion more people to be living in areas where water demand exceeds surface-water supply. billion living in developing countries.
Using a novel polymerization process, MIT chemical engineers have created a new two-dimensional polymer that self-assembles into sheets, unlike all other polymers which form one-dimensional chains. Dubbs Professor of Chemical Engineering at MIT and the senior author of the new study. —Michael Strano.
The midwater plume comprises two stages: (i) the dynamic plume, in which the sediment-laden discharge water rapidly descends and dilutes to a neutral buoyancy depth, and (ii) the subsequent ambient plume that is advected by the ocean current and subject to background turbulence and settling. Earlier post.). n Bancaria “la Caixa.”.
As water-splitting technologies improve, often using porous electrode materials to provide greater surface areas for electrochemical reactions, their efficiency is often limited by the formation of bubbles that can block or clog the reactive surfaces. As a result, there were substantial changes of the transport overpotential.
Researchers led by MIT professor Daniel Nocera have produced an “artificial leaf”—a solar water-splitting cell producing hydrogen and oxygen that operates in near-neutral pH conditions, both with and without connecting wires. (B) MS signal and SFE values for a wireless configuration. Reece et al. Click to enlarge.
Researchers at MIT are proposing using a variation on pumped hydroelectric systems for storage of electricity produced by offshore wind farms. Geologic pumped hydroelectric storage works by pumping water to a reservoir behind a dam when electricity demand is low. Earlier post.).
New processing methods developed by MIT researchers could help ease looming shortages of the essential metals that power everything from phones to automotive batteries by making it easier to separate these rare metals from mining ores and recycled materials. —Antoine Allanore.
Daniel Nocera and his associates have found another formulation, based on inexpensive and widely available materials, that can efficiently catalyze the splitting of water molecules using electricity. Earlier post.). Earlier post.). Materials for the new catalyst are even more abundant and inexpensive than those required for the first.
A new desalination process developed by engineers at MIT could treat produced water—deep water, often heavily laden with salts and minerals—from natural gas wells at relatively low cost. The research is the work of a team including MIT postdoc Prakash Narayan, mechanical engineering professor John H.
A team of MIT researchers, led by Dr. Angela Belcher, has engineered a common bacteriophage virus (M13) to function as a scaffold to mediate the co-assembly of zinc porphyrins (photosensitizer) and iridium oxide hydrosol clusters (catalyst) for visible light-driven water oxidation. Source: Nam et al., Supplementary materials.
In a presentation at the 241 st National Meeting of the American Chemical Society today in Anaheim, Dr. Daniel Nocera of MIT said that his team has developed a practical “artificial leaf”—a type of solar cell that shows promise as an inexpensive source of electricity for the poor in developing countries. Earlier post.).
Researchers at MIT have identified , quantified, and modeled a major reason for the poor performance of electroreduction processes to convert CO 2 to fuel or other useful chemicals. The research was supported by Shell, through the MIT Energy Initiative. A paper on their work is published in the ACS journal Langmuir. —Soto et al.
A team of researchers at MIT is developing and testing a new silicon carbide (SiC) cladding material for nuclear fuel rods that could reduce the risk of hydrogen production by roughly a thousandfold compared to the common zircaloy cladding. SiC is “ very promising, but not at the moment ready for adoption ” by the nuclear industry, he adds.
A team of MIT researchers lead by Prof. John Goodenough from the University of Texas as Austin, has found one of the most effective catalysts yet discovered for the oxygen evolution reaction (OER) for use in water-splitting to produce hydrogen or in rechargeable metal-air batteries. Yang Shao-Horn, in collaboration with Prof.
MIT scientists have designed a solar-powered desalination system that turns saltwater into drinkable water at a higher volume – and lower cost. more… The post MIT scientists used solar power to make drinking water cheaper than tap water appeared first on Electrek.
Researchers at MIT led by Drs. In addition, the viruses make the nanotubes soluble in water, which makes it possible to incorporate the nanotubes into the solar cell using a water-based process that works at room temperature. The work was funded by Eni, through the MIT Energy Initiative’s Solar Futures Program.
A team of researchers at MIT has described a framework for efficiently coupling the power output of a series-connected string of single-band-gap solar cells to an electrochemical process that produces storable fuels. Watson Research Center) and former MIT graduate student Casandra Cox (now at Harvard). Source: Winkler et al.
Based on the interim results of a new study, MIT researchers are warning smaller nations to proceed with caution in pursuing the development of their natural gas resources. —Sergey Paltsev, an author of the study and a principal research scientist at the MIT Energy Initiative. Cyprus offshore hydrocarbon exploration blocks.
To further that vision, MIT researchers have given new capabilities to their fleet of robotic boats—which are being developed as part of an ongoing project—that lets them target and clasp onto each other, and keep trying if they fail. The aim is to use roboat units to bring new capabilities to life on the water.
The US Department of Energy’s Nuclear Energy University Program ( NEUP ) has awarded research funds to the MIT Energy Initiative, CORE POWER, and the Idaho National Laboratory for a three-year study into the development of offshore floating nuclear power generation in the US. Source: MIT CANES. Concept of OFNP.
MIT Energy Initiative Receiving (MITEI) is receiving $25M from Shell to fund the research and development of high-value, sustainable technologies designed to drive innovation in energy delivery. Beginning this year, the research agreement will fund a suite of projects at $5 million per year for the coming five years.
In a paper being presented at WCX SAE World Congress Experience in Detroit this week, a team from MIT is proposing the use of a flex-fuel gasoline-alcohol engine approach for a series-hybrid powertrain for long-haul Class 8 trucks. The research was supported by the MIT Arthur Samberg Energy Innovation Fund. and Bromberg, L.
Three MIT-led research teams have won awards from the Department of Energy’s Nuclear Energy University Programs ( NEUP ) initiative to support research and development on the next generation of nuclear technologies. Fluoride-salt High-Temperature Reactor.
a company that has developed a low-cost hybrid electric powertrain designed specifically for class 1-3 commercial fleet use ( earlier post ), will display a Chevrolet Express 2500 cargo van fitted with the company’s hybrid technology at the 2012 Massachusetts Institute of Technology (MIT) Energy Conference Energy Showcase on 16 March.
Researchers at MIT, led by associate professor of mechanical engineering Kripa Varanasi, say they have found a solution, described recently in the RSC journal Physical Chemistry Chemical Physics. — Methane hydrates can freeze upon contact with cold water in the deep ocean, are a chronic problem for deep-sea oil and gas wells.
MIT researchers have found a new family of highly active catalyst materials that provides the best performance yet in the oxygen evolution reaction (OER) in electrochemical water-splitting—a key requirement for energy storage and delivery systems such as advanced fuel cells and lithium-air batteries. Grimaud et al.
To try to expand biofuels’ potential impact, a team of MIT engineers has now found a way to expand the use of a wider range of nonfood feedstocks to produce such fuels. The MIT researchers developed a way to circumvent that toxicity, making it feasible to use those sources, which are much more plentiful, to produce biofuels.
An international research team from Tsinghua University, MIT and Argonne National Laboratory has discovered a series of novel lithium titanate hydrates that show better electrochemical performances compared to all the Li 2 O–TiO 2 materials reported so far—including those after nanostructuring, doping and/or coating. —Wang et al.
Researchers at MIT have improved a proposed liquid battery system that could enable renewable energy sources to compete with conventional power plants. The fact that we don’t need a mountain, and we don’t need lots of water, could give us a decisive advantage. Earlier post.). —Donald Sadoway.
A new MIT and Caltech study on the impact that global climate change will have on precipitation patterns concludes that extreme rainfall will increase in the future. The basic underlying reason for the projected increase in precipitation is that warmer air can hold more water vapor. C by 2100, with a 90% probability range of 3.5
A team from MIT has developed a new approach to fabricating oxide-based solid-state electrolytes that are comparable in thickness to the polymer separators found in current Li-ion batteries without sintering: sequential decomposition synthesis (SDS). Recent progress in solid-state battery (SSB) electrolytes such as Li garnets (e.g.,
Researchers at MIT have found a way to use thermophotovoltaic devices—solid-state devices that use the sun’s heat, usually concentrated with mirrors, to generate electricity directly—without mirrors to concentrate sunlight, potentially making the system much simpler and less expensive. similar to the greenhouse effect).
Findings by MIT researchers could help advance the commercialization of supercritical water technology for the desulfurization and upgrading of high-sulfur crude oil into high-value, cleaner fuels such as gasoline without using hydrogen—a major change in refining technology that would reduce costs, energy use, and CO 2 emissions.
The MIT Energy Initiative (MITEI) announced its latest round of seed grants to support early-stage innovative energy projects. Past themes have included topics as diverse as the role of big data and the energy-water nexus. A total of more than $1.6 million was awarded to 11 projects, each lasting up to two years.
MIT researchers have now developed a sub-terahertz-radiation receiving system that could help steer driverless cars when traditional methods fail. A traditional irrigation system has one pump that directs a powerful stream of water through a pipeline network that distributes water to many sprinkler sites. —Ruonan Han.
Researchers from UC Davis and the Massachusetts Institute of Technology have uncovered more detail about the functioning of cobalt as a water-splitting catalyst. In 2008, MIT chemists, led by Professor Dan Nocera, reported that a simple cobalt catalyst could split water at neutral pH to produce oxygen, protons and electrons.
Through a recent modeling experiment, a team of NASA-funded researchers have found that future concentrations of carbon dioxide and ozone in the atmosphere and of nitrogen in the soil are likely to have an important but overlooked effect on the cycling of water from sky to land to waterways. Credit: NASA. Click to enlarge.
However, such arguments have been difficult to justify quantitatively, the MIT team notes; quantitative estimates of direct volcanic outgassing are much too small to account for the changes in the carbon cycle. Other proposals suggest secondary effects of the volcanism—such as raging coal fires—as the mechanism.
The SAB is chaired by John Deutch, Institute Professor at MIT, whose government experience includes service as Director of Energy Research and Undersecretary of the Department of Energy, and Undersecretary of Defense for Acquisition and Technology. Earlier post.). —John Deutch.
A new study by researchers at MIT has found that factoring the non-CO 2 combustion emissions and effects into the lifecycle of a Synthetic Paraffinic Kerosene (SPK) aviation fuel can lead to a decrease in the relative environmental merit of the SPK fuel compared to conventional jet fuel. Aviation climate change impacts pathway.
MIT researchers have discovered that lead concentrations in the Indian Ocean are now higher than in the northern Atlantic and northern Pacific oceans. Boyle and his students began collecting water and coral samples from the Indian Ocean three years ago. But the data is very clear that this is happening.”.
The new MIT proces converts furfural into GVL via a series of cascading (domino-like) reactions catalyzed by zeolites with Lewis and Brønsted acid sites. The new MIT production method, described in the June 11 issue of the journal Angewandte Chemie , eliminates both of those obstacles. Credit: Bui et al. Click to enlarge.
Now, researchers from MIT, with a colleague from Toyota Motor Europe’s R&D group, have carried out detailed tests that seem to resolve the questions surrounding one promising material for such batteries: lithium iodide (LiI). display: block; margin-left: auto; margin-right: auto;" alt="Mit" title="Mit" src="[link] />.
Algae have the potential to produce large volumes of fuel per unit area of production on marginal lands using saline water unsuitable for food crops. Thus, algal biofuels could expand transportation energy supplies, without significantly displacing land and water resources that would otherwise have been used for food production.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content