This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.
New processing methods developed by MIT researchers could help ease looming shortages of the essential metals that power everything from phones to automotive batteries by making it easier to separate these rare metals from mining ores and recycled materials. —Antoine Allanore.
A new desalination process developed by engineers at MIT could treat produced water—deep water, often heavily laden with salts and minerals—from natural gas wells at relatively low cost. The research is the work of a team including MIT postdoc Prakash Narayan, mechanical engineering professor John H.
A team of MIT researchers, led by Dr. Angela Belcher, has engineered a common bacteriophage virus (M13) to function as a scaffold to mediate the co-assembly of zinc porphyrins (photosensitizer) and iridium oxide hydrosol clusters (catalyst) for visible light-driven water oxidation. Source: Nam et al., Supplementary materials.
A team of MIT researchers lead by Prof. John Goodenough from the University of Texas as Austin, has found one of the most effective catalysts yet discovered for the oxygen evolution reaction (OER) for use in water-splitting to produce hydrogen or in rechargeable metal-air batteries. Yang Shao-Horn, in collaboration with Prof.
Three MIT-led research teams have won awards from the Department of Energy’s Nuclear Energy University Programs ( NEUP ) initiative to support research and development on the next generation of nuclear technologies. Fluoride-salt High-Temperature Reactor.
The US Department of Energy’s Nuclear Energy University Program ( NEUP ) has awarded research funds to the MIT Energy Initiative, CORE POWER, and the Idaho National Laboratory for a three-year study into the development of offshore floating nuclear power generation in the US. Source: MIT CANES. Concept of OFNP.
Researchers at MIT led by Drs. In addition, the viruses make the nanotubes soluble in water, which makes it possible to incorporate the nanotubes into the solar cell using a water-based process that works at room temperature. The work was funded by Eni, through the MIT Energy Initiative’s Solar Futures Program.
A team of researchers at MIT has described a framework for efficiently coupling the power output of a series-connected string of single-band-gap solar cells to an electrochemical process that produces storable fuels. Watson Research Center) and former MIT graduate student Casandra Cox (now at Harvard). Source: Winkler et al.
In a paper being presented at WCX SAE World Congress Experience in Detroit this week, a team from MIT is proposing the use of a flex-fuel gasoline-alcohol engine approach for a series-hybrid powertrain for long-haul Class 8 trucks. The research was supported by the MIT Arthur Samberg Energy Innovation Fund. and Bromberg, L.
An international research team from Tsinghua University, MIT and Argonne National Laboratory has discovered a series of novel lithium titanate hydrates that show better electrochemical performances compared to all the Li 2 O–TiO 2 materials reported so far—including those after nanostructuring, doping and/or coating.
MIT researchers have found a new family of highly active catalyst materials that provides the best performance yet in the oxygen evolution reaction (OER) in electrochemical water-splitting—a key requirement for energy storage and delivery systems such as advanced fuel cells and lithium-air batteries. Grimaud et al.
The SAB is chaired by John Deutch, Institute Professor at MIT, whose government experience includes service as Director of Energy Research and Undersecretary of the Department of Energy, and Undersecretary of Defense for Acquisition and Technology. Earlier post.). —John Deutch.
A team from the National University of Singapore's Nanoscience and Nanotechnology Initiative (NUSNNI), led by principle investigator Dr. Xian Ning Xie, has developed a polystyrene membrane-based supercapacitor that they say will be easier to scale up than the current alternatives. Click to enlarge. —Xian Ning Xie.
Butyric acid decarboxylates in supercritical water to give propane as the major product at 454 °C and 25 MPa. 3HB undergoes joint dehydration and decarboxylation in subcritical water to yield propylene at 371 °C and 25 MPa with yields of up to 48 mol %. —Fischer et al. Authors Curt R. Fischer, Andrew A. Peterson, Jefferson W.
Through a recent modeling experiment, a team of NASA-funded researchers have found that future concentrations of carbon dioxide and ozone in the atmosphere and of nitrogen in the soil are likely to have an important but overlooked effect on the cycling of water from sky to land to waterways. Benjamin Felzer, Lehigh University.
The new MIT proces converts furfural into GVL via a series of cascading (domino-like) reactions catalyzed by zeolites with Lewis and Brønsted acid sites. The new MIT production method, described in the June 11 issue of the journal Angewandte Chemie , eliminates both of those obstacles. Credit: Bui et al. Click to enlarge.
MIT researchers have developed a new system that could potentially be used for converting power plant emissions of carbon dioxide into carbon monoxide, and thence into useful fuels for cars, trucks, and planes, as well as into chemical feedstocks for a wide variety of products. Ghoniem’s lab is exploring some of these options.
Ruthenium dioxide is widely used in industrial processes, in which it’s particularly important for catalyzing the oxygen evolution reaction (OER) that splits molecules of water and releases oxygen. I think the exciting aspect of the work is that we push a little bit the boundary of our understanding of the catalysis of splitting water.
Using a new kind of hydrogel material, researchers at the University of Texas at Austin have pulled water out of thin air at temperatures low enough to be achieved with sunlight. Atmospheric water harvesting draws water from humidity in the air. The UT Austin technique is aimed at the latter.
When methane hydrates are “melted,” or exposed to pressure and temperature conditions outside those where the formations are stable, the solid crystalline lattice turns to liquid water, and the enclosed methane molecules are released as gas. The University of Texas at Austin. Massachusetts Institute of Technology (MIT).
Researchers at MIT have devised a simple, soluble metal oxide system to capture and transform CO 2 into useful organic compounds. Molybdate is relatively abundant and stable in air and water. —Christine Thomas, associate professor of chemistry at Brandeis University, who was not involved in the research.
Researchers at MIT and King Fahd University of Petroleum and Minerals (KFUPM) in Saudi Arabia have devised a robotic system that can detect leaks in gas, oil and water pipelines at a rapid pace and with high accuracy by sensing a large pressure change at leak locations. Top ]: Solid model side view of Leak Detector.
Energetics Technology Center will build upon past successes with co-deposition experiments using palladium, lithium, and heavy water together to create an environment in which LENR can occur. Stanford University. Stanford University will explore a technical solution based on LENR-active nanoparticles and gaseous deuterium.
Together with the Self-Assembly Laboratory at MIT, Starke was eager to move away from our current understanding of car interiors as the forces reshaping the nature of transportation are eventually shifting toward a kind of vehicle that defies conventions like front and back seats. Interiors could even take on malleable, modular uses.
Within the program, BP scientists and engineers and MIT researchers collaborate across a range of fields including energy conversion, energy sustainability, materials science, and the modeling of global energy production and use. —Ellen Williams, BP’s Chief Scientist.
Such a design, as described at the Small Modular Reactors Symposium by MIT professors Jacopo Buongiorno, Michael Golay, and Neil Todreas, along with others from MIT, the University of Wisconsin, and Chicago Bridge and Iron, could ride out tsunamis.
At commercial scale, the inputs to the proposed “carbon refinery” process are carbon-free renewable energy, water, and CO 2. University of Wisconsin-Madison. The University of Wisconsin-Madison aims to eliminate CO 2 release in the production of chemicals by integrating the unique and efficient capabilities of two microorganisms.
Researchers at the University of Colorado Boulder and Singapore University of Technology and Design have added a “fourth dimension” to additive manufacturing technology, opening up possibilities for the creation and use of adaptive, composite materials in manufacturing, packaging and biomedical applications. A team led by H.
—Martin Bazant, a professor at MIT and a leader of the study. “. But once in the solid, the lithium can rearrange itself, sometimes causing the material to split into two distinct phases, much as oil and water separate when mixed together.
An international team of researchers led by Quanguan Pang at Peking University and Donald Sadoway at MIT reports a bidirectional, rapidly charging aluminum–chalcogen battery operating with a molten-salt electrolyte composed of NaCl–KCl–AlCl 3. —Pang et al.
Richards-Kortum is a professor of bioengineering at Rice University , in Houston, and codirector of the Rice360 Institute for Global Health Technologies , which is developing affordable medical equipment for underresourced hospitals. in 1990, she joined the University of Texas at Austin as a professor of biomedical engineering.
Water will be the primary byproduct. A novel metal complex for electrolysis of water will be used to generate the hydrogen at high rates. The aerobic microbe has been engineered at MIT and is capable of converting a variety of organic compounds into oil, from which biodiesel may be produced. NC State University.
Right now, such tattoos dont exist, but the key technology is being worked on in labs around the world, including my lab at the University of Massachusetts Amherst. The Rise of Epidermal Electronics The idea of a peel-and-stick sensor comes from the groundbreaking work of John Rogers and his team at Northwestern University.
The research, published in the journal Science , outlines a potential way to make a future generation of water-splitting catalysts from three abundant metals—iron (Fe), cobalt (Co) and tungsten (W)—rather than the rare, costly metals on which many of today’s catalysts rely. For this study, Edward H. —Aleksandra Vojvodic.
A team of researchers at MIT and Tsinghua University has developed a high-rate, high-capacity and long-lived anode for Li-ion batteries comprising a yolk-shell nanocomposite of aluminum core (30 nm in diameter) and TiO 2 shell (~3 nm in thickness), with a tunable interspace (Al@TiO 2 , or ATO). Earlier post.). —Li et al.
The projects are based in 24 states, with approximately 47% of the projects led by universities; 29% by small businesses; 15% by large businesses; 7.5% University. Researchers from Colorado State University will develop a system. Researchers from Colorado State University will develop a system. University.
OsComp Systems, a startup formed by MIT alumni, has developed , with support from the US Department of Energy (DOE), a hybrid rotary compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations.
The surprising proximity of the surface MIT transition temperature of nonstoichiometric films with that of the fully oxygenated bulk suggests that the electronic properties in the surface region are not significantly affected by oxygen deficiency in the bulk.
The post-combustion outlet gas is more easily separated into water and CO 2 to the pipeline, thereby lowering the electricity costs of grids with high levels of VRE. Colorado State University. University of Pittsburgh. The proposed technology easily separates the CO 2 and H 2 O in the flue gas of an oxy-combustor. Envergex, LLC.
The projects selected are located in 25 states, with 50% of projects led by universities, 23% by small businesses, 12% by large businesses, 13% by national labs, and 2% by non-profits. University of Massachusetts, Amherst. Development of a Dedicated, High-Value Biofuels Crop The University of Massachusetts, Amherst will develop an.
Shuguang Zhang, associate director of MIT’s Center for Biomedical Engineering, and postdocs Iftach Yacoby and Sergii Pochekailov, together with colleagues at Tel Aviv University in Israel and the in Colorado, have found a way to use bioengineered proteins to flip this preference, allowing more hydrogen to be produced.
The GE Research team aims to reduce operations and maintenance (O&M) costs by moving from a time- to condition-based predictive maintenance framework, using GE Hitachi’s BWRX-300 boiling water reactor as the reference design. University of Michigan: PROJECT "SAFARI”- Secure Automation For Advanced Reactor Innovation- $5,195,000.
Microfractures in metal alloys, though impossible to see with the naked eye, can easily spread when exposed to water or hydrogen and lead to major problems in structures such as bridges, electrochemical and nuclear plants and hydrogen storage containers, leading to failures and expensive repairs.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content