This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
ion Ventures, a modern utility and energy storage infrastructure specialist, and LiNa Energy , a solid-state battery technology developer, concluded their first successful trial of LiNa’s proprietary solid-state sodium-nickel battery platform at an undisclosed location in South East England last week.
Researchers at the University of Queensland have show that a low-cost Mg-based hydrogen storage alloy is possible with only 1 wt% Si. wt% hydrogen is achieved via trace sodium (Na) addition. Mg 2 Si is a promising catalyst for Mg-based hydrogen storage materials due to its lowcost, light weight, and non-toxic properties.
UK-based Faradion, a developer of sodium-ion battery technology ( earlier post ), and Phillips 66 have launched a new technical collaboration to develop lower-cost and higher-performing anode materials for sodium-ion batteries. Earlier post.).
Scheme of the new full sodium-ion battery, which combines an intercalation cathode and a conversion anode. The reported performance of the new Na-ion battery suggests that the sodium-ion system is a potentially promising power source for promoting the substantial use of low-cost energy storage systems in the near future, the team concluded.
Stationary energy storage systems that can operate for many cycles, at high power, with high round-trip energy efficiency, and at lowcost are required. Cost is a greater concern. We decided we needed to develop a new chemistry if we were going to make low-cost batteries and battery electrodes for the power grid.
low-cost Na-ion battery system for upcoming power and energy. low-cost Na-ion battery system for upcoming power and energy. Sodium-ion batteries have been discussed in the literature. The structure has three sodium sites: the Na site in the small tunnels is fully occupied, while the sites. Earlier post.)
Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9 100 to 150 mA h g ? 100 to 150 mA h g ?1
Researchers at the University of Maryland have developed a nanocomposite material of amorphous, porous FePO 4 nanoparticles electrically wired by single-wall carbon nanotubes as a potential cathode material for sodium-ion batteries (SIBs). SWNT composite is a promising cathode material for viable sodium-ion batteries.
Sodium-ion batteries (Na-ion, NIBs) are seen as an alternative to lithium-ion batteries for large-scale applications due to their lower cost and abundant supply of sodium. However, low capacity and poor rate capability of existing anodes have been major obstacles to the commercialization of NIBs. Lev and Dr. Denis Y.W.
Building on earlier work, researchers in China have fabricated a hierarchical metal-organic nanocomposite for use as a cathode in sodium-ion batteries (SIBs). 2017) “In-Situ Formed Hierarchical Metal-Organic Flexible Cathode for High-Energy Sodium-Ion Batteries” ChemSusChem doi: 10.1002/cssc.201701484. and Huang, Y. 201701484.
Natron Energy , a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has closed a strategic investment by Chevron Technology Ventures (CTV) to support the development of stationary energy storage systems for demand charge management at electric vehicle (EV) charging stations.
Tin (Sn) shows promise as a robust electrode material for rechargeable sodium-ion (Na-ion) batteries, according to a new study by a team from the University of Pittsburgh and Sandia National Laboratory. reversible and rapid ion insertion and extraction, but using sodium ions rather than lithium. for the positive electrode.
Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C. Example of a lithium-water rechargeable battery.
Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.
Professor John Goodenough, the inventor of the lithium-ion battery, and his team at the University of Texas at Austin have identified a new cathode material made of the nontoxic and inexpensive mineral eldfellite (NaFe(SO 4 ) 2 ), presenting a significant advancement in the quest for a commercially viable sodium-ion battery.
British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Oxford University was also a partner. Sodium-ion intercalation batteries—i.e., Earlier post.)
After years of anticipation, sodium-ion batteries are starting to deliver on their promise for energy storage. Sodium-ion batteries just don't have the oomph needed for EVs and laptops. At about 285 Wh/kg, lithium-ion batteries have twice the energy density of sodium, making them more suitable for those portable applications.
ARPA-E selected the following 12 teams from universities, national laboratories and the private sector to address and remove key technology barriers to EV adoption by developing next-generation battery technologies: 24M Technologies will develop low-cost and fast-charging sodium metal batteries with good low-temperature performance for EVs.
The University of Oxford will lead a consortium of five other university and six industry partners to address the way electrodes for Li-ion batteries are manufactured. The project’s Principal Investigator is Professor Patrick Grant of the University of Oxford. Next generation sodium ion batteries–NEXGENNA.
cost associated with thermal management. Utah State University. Utah State University will develop electronic hardware and. Pennsylvania State University. Pennsylvania State University is developing an innovative. Washington University. Washington University in St. Advanced Sodium Battery.
Researchers at the University of Texas at Austin, including Prof. With this glass, a rechargeable battery with a metallic lithium or sodium anode and an insertion-compound as cathode may require a polymer or liquid catholyte in contact with the cathode. eV, which promises to offer acceptable operation at lower temperatures.
Researchers at Vanderbilt University have demonstrated that ultrafine sizes (∼4.5 nm, average) of iron pyrite (FeS 2 ) nanoparticles are advantageous to sustain reversible conversion reactions in sodium ion and lithium ion batteries. A paper on their work is published in the journal ACS Nano.
This work could open up widely available, low-cost graphitic materials for high-capacity alkali metal/Cl 2 batteries. The study is published in the Journal of the American Chemical Society. In an earlier study, the researchers reported ∼3.5 2c07826.
The researchers present these results in the journal Nature Reviews Materials as part of a cost and resource analysis of sodium-ion batteries. … The Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW) and the Justus-Liebig University Gießen are also involved in these efforts. —Vaalma et al. Resources.
Natron Energy, a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has ( earlier post ), has been awarded a $3-million grant by the California Energy Commission (CEC) for “Advanced Energy Storage for Electric Vehicle Charging Support.”
The awards are being made to companies and universities across New York that are involved in advanced research and development of energy storage applications that could benefit transportation, utility Smart Grid applications, renewable energy technologies, and other industries. City University of New York. Cornell University.
Researchers led by a team from Griffith University in Australia have developed a multifunctional polymer binder that not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium-ion diffusion coefficient in a LiFePO 4 (LFP) electrode during the operation of the batteries.
A team at the University of Maryland has demonstrated that a material consisting of a thin tin (Sn) film deposited on a hierarchical conductive wood fiber substrate is an effective anode for a sodium-ion (Na-ion) battery, and addresses some of the limitations of other Na-ion anodes such as capacity fade due to pulverization.
Eagle Picher, in partnership with the Pacific Northwest National Laboratory, will develop a new generation of high energy, lowcost planar liquid sodium beta batteries for grid scale electrical power storage applications. LowCost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors. BIOMASS ENERGY.
The small size, multi-fuel capability and potential lowcost of the ULRE could also help speed adoption of electric vehicles. High energy sodium-nickel battery cell for EV application (Acronym: NINACELL). Ionotec Ltd (lead), Dynamic-Ceramic Ltd, Birmingham University, University College London, Aloxsys Inc.
CELEST pools the know-how of 29 institutes of its partners: Karlsruhe Institute of Technology (KIT), Ulm University, and the Center for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW). The Center for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW) and Gießen University are also partners of this proposal.
For example, solar-storage integrated systems require lifetimes matching solar cells (30 years), electric vehicles require a high power and capacity, and grid storage requires an extreme lowcost. —Cohn et al. (a) a) First five galvanostatic charge−discharge profiles at current density of 0.2 Credit: ACS, Cohn et al. 5b04187.
The winning concepts were: A molten air battery that uses a molten salt electrolyte at elevated temperature from Professor Stuart Licht at George Washington University. A novel rechargeable zinc battery from the research group of Professors Paul Wright and James Evans from the University of California, Berkeley.
A team from the University of Science and Technology Beijing is proposing a new super-valent battery based on aluminium ion intercalation and deintercalation. Sodium-ion and magnesium-ion batteries, as new energy storage systems in portable devices, have attracted much attention of the investigators. Wang et al. Click to enlarge.
The US Department of Energy’s National Energy Technology Laboratory (NETL) is conducting research on alternative options to reduce costs and make large-scale energy storage safer and more practical. Sodium is another element that is less expensive than lithium. High-energy density magnesium batteries for smart electrical grids.
lithium, sodium or potassium) on a copper–carbon cathode current collector at a voltage of more than 3.0 Finally, sodium is cheaper than lithium and widely available from the oceans, which makes a sodium battery preferable to a lithium battery, but insertion hosts for Na + have lower capacities than insertion hosts for Li +.
(DOE funding $75,161,246, total project value with cost share $150,322,492). In partnership with a consortium of local research institutions, this project deploy smart grid systems at partners’ university campus properties and technology transfer laboratories. Demonstration of Sodium Ion Battery for Grid Level Applications.
Researchers from Nanyang Technical University (NTU) in Singapore have shown high-capacity, high-rate, and durable lithium- and sodium-ion battery (LIB and NIB) performance using single-crystalline long-range-ordered bilayered VO 2 nanoarray electrodes. The VO 2 nanoarrays are supported on graphene foam (GF) and coated with a thin (?2
Sodium-metal batteries (SMBs) are one of the most promising high-energy and low-cost energy storage systems for the next-generation of large-scale applications. Bristol-led team uses nanomaterials made from seaweed to create a strong battery separator, paving the way for greener and more efficient energy storage.
It was the most difficult chemistry” to make work but had potential benefits due to calcium’s lowcost as well as its inherent high voltage as a negative electrode. It was the seeming impossibility of making calcium work in a liquid battery that attracted Ouchi to the problem, he says. “It Click to enlarge.
Clemson University. Breeding High Yielding Bioenergy Sorghum for the New Bioenergy Belt Clemson University, along with the Carnegie Mellon Robotics Institute and partners, will phenotype an exhaustive set of international germplasm and plant varieties. Purdue University. University of Illinois at Urbana-Champaign.
Purdue University, West Lafayette, Ind. LowCost Roll-to-Roll Manufacturing of Reusable Sorbents for Energy and Water Industries, $150,000 Qualification of SAS4A/SASSYS-1 for Sodium-Cooled Fast Reactor Authorization and Licensing, $674,484 Advanced Reactor Concepts LLC, Chevy Chase, Md. Pipersville, Pa. New York, N.Y.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content