Remove Low Cost Remove Sodium Remove Store
article thumbnail

UNSW team proposes hard carbons from automotive shredder residue as anode material for sodium-ion batteries

Green Car Congress

Researchers from UNSW Sydney (Australia) report in an open-access paper in the Journal of Power Sources on the use of hard carbons derived from automotive shredder residue (ASR) as a suitable anode electroactive material for sodium-ion batteries (NIBs). The situation is much worse for graphite. Sarkar et al. 2023.233577

Sodium 170
article thumbnail

Graphene Jolts Sodium-Ion Batteries’ Capacity

Cars That Think

After years of anticipation, sodium-ion batteries are starting to deliver on their promise for energy storage. But so far, their commercialization is limited to large-scale uses such as storing energy on the grid. Sodium-ion batteries just don't have the oomph needed for EVs and laptops.

Sodium 120
article thumbnail

RAL proposes new efficient and low-cost process to crack ammonia for hydrogen using sodium amide; transportation applications

Green Car Congress

RAL researchers are proposing a new process for the decomposition of ammonia to release hydrogen that involves the stoichiometric decomposition and formation of sodium amide from Na metal. To date, very few candidates show potential beyond that of the seminal work on titanium-doped sodium alanate. Credit: ACS, David et al.

Sodium 210
article thumbnail

Fraunhofer researchers develop new low-cost dry-film electrode production process

Green Car Congress

BroadBit uses it to produce new types of sodium-ion batteries. First, they mix the active materials, intended later to release the stored energy, with additives to create a paste. On a laboratory scale, the IWS can already coat electrode foil with a remarkable production speed of several meters per minute.

Low Cost 339
article thumbnail

Chalmers team develops graphite-like anode for Na-ion batteries; Janus graphene

Green Car Congress

Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9 Na is comparable to graphite for standard lithium ion batteries.

Sodium 493
article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.

Sodium 186
article thumbnail

Chevron invests in Prussian Blue battery tech company Natron Energy; stationary storage for EV charging stations

Green Car Congress

Natron Energy , a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has closed a strategic investment by Chevron Technology Ventures (CTV) to support the development of stationary energy storage systems for demand charge management at electric vehicle (EV) charging stations.

Chevron 288