This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers at Tsinghua University have developed a high-power-density zinc-air fuel cell (ZAFC) stack using an inexpensive manganese dioxide (MnO 2 ) catalyst with potassium hydroxide (KOH) electrolyte. Moreover, zinc has other merits, such as, abundant resources, lowcost, low toxicity, easy storage and safe handling.
based ZincAir, Inc. ZAI) has obtained exclusive rights from LLNL for the mechanically rechargeablezincair fuel cell (US Patent 5,434,020) invented by John Cooper, a retired LLNL chemist, who is on the ZAI technical Board of Advisors. Worldwide resources of zinc total more than 1.8 Kalispell, Mont.-based
University of Sydney team advances rechargeablezinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst. Zinc-air batteries are powered by zinc metal and oxygen from the air. In contrast, our method produces a family of new high-performance and low-cost catalysts.
ARPA-E’s new program, Robust Affordable Next Generation Energy Storage Systems (RANGE) ( earlier post ), aims to accelerate widespread EV adoption by dramatically improving driving range and reliability, and by providing low-cost, low-carbon alternatives to today’s vehicles. Dendrite Free Zinc?Air Air Battery.
Photo-electrochemically rechargeablezinc-air batteries. The zinc-air battery is a promising technology that has high energy density but limited power density. The research team will develop a photo-electrochemical battery with a stable zinc electrode capable of generating electricity using sunlight and air.
The critical barrier to wider deployment of electric vehicles is the high cost and low energy of today’s batteries. This ARPA-E program seeks to develop a new generation of ultra-high energy density, low-cost battery technologies for long range plug-in hybrid and all-electric vehicles. Sion Power Corporation.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content