Remove Low Cost Remove Ni-Li Remove Universal
article thumbnail

New aqueous rechargeable lithium battery shows good safety, high reliability, high energy density and low cost; another post Li-ion alternative

Green Car Congress

mol l -1 Li 2 SO 4 aqueous solution as electrolyte. Researchers from Fudan University in China and Technische Universität Chemnitz in Germany have developed an aqueous rechargeable lithium battery (ARLB) using coated Li metal as the anode. mol l -1 Li 2 SO 4 aqueous solution as electrolyte, an ARLB is built up.

Li-ion 281
article thumbnail

New cobalt-free high-voltage spinel cathode material with high areal capacity

Green Car Congress

Researchers from the University of California San Diego (UCSD) and the University of Texas at Austin, with colleagues at the US Army Research Laboratory and Lawrence Berkeley National Laboratory, have developed a thick cobalt-free high voltage spinel (LiNi 0.5 —Li et al. (a) —Li et al. Earlier post.).

Ni-Li 307
article thumbnail

New high-voltage electrolyte additive supports high energy density and stability in LMNC Li-ion battery; 2x energy density over LiCoO2

Green Car Congress

A team led by researchers at Chungnam National University (S. Korea) has developed a novel high-voltage electrolyte additive, di-(2,2,2 trifluoroethyl)carbonate (DFDEC), for use with the promising lithium-rich layered composite oxide high-energy cathode material xLi 2 MnO 3 ·(1-x)LiMO 2 (M = Mn, Ni, Co). O 2 (Li 1.2 O 2 (Li 1.2

Li-ion 329
article thumbnail

WSU team develops highly-efficient, low-cost nickel-iron nanofoam for OER for water splitting

Green Car Congress

Researchers at Washington State University, with colleagues at Argonne National Laboratory and Pacific Northwest National Laboratory, have combined inexpensive nickel and iron in a very simple, five-minute process to create large amounts of a high-quality catalyst required for water splitting. At a potential as low as 1.42V (vs.

Ni-Li 186
article thumbnail

Argonne and Hanyang University Develop New High-Energy Cathode Material With Improved Thermal Stability; Good Fit for PHEV Applications

Green Car Congress

SEM of Li[Ni 0.64 Mn 0.18 ]O 2 particle with concentration gradient of Ni, Co, and Mn contents. In this material (Li[Ni 0.64 In this material (Li[Ni 0.64 Comparison of cycling performance of half cell based on bulk Li[Ni 0.64 and concentration-gradient material Li[Ni 0.64

Ni-Li 170
article thumbnail

Hanyang/BMW team develops high-energy density Li-ion battery with carbon-nanotube-Si composite anode and NCM concentration gradient cathode

Green Car Congress

Researchers from Hanyang University in Korea and the BMW Group have developed a new fully operational, practical Li-ion rechargeable battery combining high energy density with excellent cycle life. g cm -3 ; a two-sloped full concentration gradient (TSFCG) Li[Ni 0.85 O 2 , Li[Ni 0.85 O 2 (NCM) and Li[Ni 0.8

Li-ion 210
article thumbnail

University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst

Green Car Congress

University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst. Other two amorphous bimetallic, Ni 0.4 O x and Ni 0.33 In contrast, our method produces a family of new high-performance and low-cost catalysts. —Wei et al. —Professor Yuan Chen.

Zinc Air 150