Remove Lithium Ion Remove Sodium Remove Store
article thumbnail

Argonne researchers find cathode material synthesis a key reason for performance degradation of sodium-ion batteries

Green Car Congress

One of the more promising candidates for batteries beyond the current standard of lithium-ion materials is the sodium-ion (Na-ion) battery. Na-ion is particularly attractive because of the greater abundance and lower cost of sodium compared with lithium.

Sodium 433
article thumbnail

Chalmers team develops graphite-like anode for Na-ion batteries; Janus graphene

Green Car Congress

Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9 100 to 150 mA h g ? 100 to 150 mA h g ?1

Sodium 379
article thumbnail

U Alberta team develops hybrid sodium-ion capacitor; intermediate in energy & power between ultracaps and batteries

Green Car Congress

A team led by researchers from the University of Alberta (Canada) Scientists has developed a hybrid sodium-ion capacitor (NIC) using active materials in both the anode and the cathode derived entirely from peanut shells—a green and highly economical waste globally generated at more than 6 million tons per year. Batteries'

Sodium 278
article thumbnail

New organic cathode for high performance solid-state sodium-ion battery

Green Car Congress

Solid-state sodium-ion batteries are safer than conventional lithium-ion batteries, which pose a risk of fire and explosions, but their performance has been too weak to offset the safety advantages. Normally, a solid-state battery’s ability to store energy is halted when the resistive cathode?electrolyte

Sodium 275
article thumbnail

GE testing sodium halide battery/Li-ion battery/fuel cell hybrid system for transit bus

Green Car Congress

GE’s ecomagination.com publication reports that GE engineers have begun testing a transit bus equipped with a new hybrid energy system integrating GE’s Durathon sodium-halide battery ( earlier post ), a lithium-ion battery and a hydrogen fuel cell.

Sodium 225
article thumbnail

GE demonstrates dual battery system for electric buses; pairing high-energy density sodium battery with high-power lithium battery optimizes performance and lowers cost

Green Car Congress

The hybrid systems research team at GE Global Research has successfully demonstrated a dual battery system for an electric transit bus, pairing a high-energy density sodium metal halide battery with a high-power lithium battery. Sodium batteries are on the opposite side of the spectrum. Click to enlarge.

Sodium 256
article thumbnail

PNNL: single-crystal nickel-rich cathode holds promise for next-generation Li-ion batteries

Green Car Congress

Researchers are working on ways to store more energy in the cathode materials by increasing nickel content. Nickel-rich cathode materials have real potential to store more energy. These carry advantages for storing and discharging energy faster. (Image courtesy of Jie Xiao | Pacific Northwest National Laboratory).

Li-ion 418