article thumbnail

Researchers develop room-temp 1,000+ cycle rechargeable solid-state lithium-air battery

Green Car Congress

Researchers from the Illinois Institute of Technology (IIT), Argonne National Laboratory, and the University of Illinois at Chicago have developed a room-temperature solid-state lithium-air battery that is rechargeable for 1,000 cycles with a low polarization gap and can operate at high rates. Ngo, Paul C.

article thumbnail

University of Münster team reviews battery cost forecasts, provides consolidated view

Green Car Congress

A team at the University of Münster has reviewed 53 studies that provide time- or technology-specific cost estimates for lithium-ion, solid-state, lithium–sulfur and lithiumair batteries among more than 2,000 publications related to the topic.

Universal 243
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Researchers Develop Solid-State, Rechargeable Lithium-Air Battery; Potential to Exceed 1,000 Wh/kg

Green Car Congress

Sample UDRI solid-state, rechargeable lithium-air batteries, and Dr. Binod Kumar. Engineers at the University of Dayton Research Institute (UDRI) have developed a solid-state, rechargeable lithium-air battery. Abraham (2010) A Solid-State, Rechargeable, Long Cycle Life LithiumAir Battery.

article thumbnail

Mie University team working on aqueous li-air batteries; 300 Wh/kg

Green Car Congress

Researchers at Mie University in Japan have developed a new protected lithium electrode for aqueous lithium/air rechargeable batteries. Lead researcher Nobuyuki Imanishi said that the system has a practical energy density of more than 300 Wh/kg, about twice that of many commercial lithium-ion batteries.

Universal 236
article thumbnail

OSU team demonstrates concept of potassium-air battery as alternative to lithium-air systems

Green Car Congress

Researchers at Ohio State University (OSU) have demonstrated the concept of a potassium-air (K?O O 2 battery (0.5 M KPF6 in DME) at a current density of 0.16 The dash lines indicate the calculated thermodynamic potentials for the batteries. Credit: ACS, Ren and Wu. Click to enlarge. O 2 ) battery with low overpotentials.

article thumbnail

UK Researchers Developing Rechargeable Lithium-Air Battery; Up to 10X the Capacity of Current Li-ion Cells

Green Car Congress

Diagram of the STAIR (St Andrews Air) cell. Oxygen drawn from the air reacts within the porous carbon to release the electrical charge in this lithium-air battery. Lithium-air batteries use a catalytic air cathode in combination with an electrolyte and a lithium anode. Click to enlarge.

article thumbnail

Argonne National Labs Ramping Up Lithium-Air Research and Development; Li-ion as EV Bridge Technology

Green Car Congress

Argonne National Laboratory, which has contributed heavily to the research and development of Li-ion battery technology, is now pursuing research into Lithium-air batteries. Li-air batteries use a catalytic air cathode that converts oxygen to lithium peroxide; an electrolyte; and a lithium anode.

Li-ion 281