Remove Lithium Air Remove Recharge Remove Store
article thumbnail

Researchers develop room-temp 1,000+ cycle rechargeable solid-state lithium-air battery

Green Car Congress

Researchers from the Illinois Institute of Technology (IIT), Argonne National Laboratory, and the University of Illinois at Chicago have developed a room-temperature solid-state lithium-air battery that is rechargeable for 1,000 cycles with a low polarization gap and can operate at high rates. Ngo, Paul C.

article thumbnail

UK Researchers Developing Rechargeable Lithium-Air Battery; Up to 10X the Capacity of Current Li-ion Cells

Green Car Congress

Diagram of the STAIR (St Andrews Air) cell. Oxygen drawn from the air reacts within the porous carbon to release the electrical charge in this lithium-air battery. Lithium-air batteries use a catalytic air cathode in combination with an electrolyte and a lithium anode. Click to enlarge.

article thumbnail

IIT, Argonne team designs Li2O-based Li-air battery with solid electrolyte; four-electron reaction for higher energy density

Green Car Congress

Researchers at the Illinois Institute of Technology (IIT) and US Department of Energy’s (DOE) Argonne National Laboratory have developed a lithium-air battery with a solid electrolyte. The battery is rechargeable for 1000 cycles with a low polarization gap and can operate at high rates. —Kondori et al.

Li-ion 418
article thumbnail

MIT team synthesizes all carbon nanofiber electrodes for high-energy rechargeable Li-air batteries

Green Car Congress

The carbon nanofiber electrodes are substantially more porous than other carbon electrodes, and can therefore more efficiently store the solid oxidized lithium (Li 2 O 2 ) that fills the pores as the battery discharges. Thompson and Yang Shao-Horn (2011) All-carbon-nanofiber electrodes for high-energy rechargeable Li–O 2 batteries.

MIT 268
article thumbnail

IBM Almaden Lab Exploring Lithium-Air Batteries for Next-Generation Energy Storage

Green Car Congress

General schematic of a lithium-air battery. The team plans to explore rechargeable Lithium-Air systems, which could offer 10 times the energy capacity of lithium-ion systems. Lithium-ion rechargeable (secondary) batteries are based on a pair of intercalation electrodes. not rechargeable.

article thumbnail

China team outlines 5 key areas of future research to realize Li-air batteries

Green Car Congress

In an open access paper published in the International Journal of Smart and Nano Materials , researchers from the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences review significant developments and remaining challenges of practical Li–air batteries and the current understanding of their chemistry.

Li-ion 285
article thumbnail

NYSERDA Commits $8M to Develop and Commercialize 19 New York Battery and Energy-Storage Technology Projects

Green Car Congress

The 19 projects, which include two lithium-air efforts, will leverage $7.3 Also, the system can provide backup electricity during an outage and, during normal operation, allow customers to draw on the stored energy to reduce both their peak electric grid demand and the utility charges associated with peak demand. Murray, Jr.,