This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Electrofuels approaches will use organisms able to extract energy from other sources, such as solar-derived electricity or hydrogen or earth-abundant metal ions. from solar PV) to convert carbon dioxide into liquid alcohol fuels. This process is less than 1% efficient at converting sunlight to stored chemical energy. Electrofuels.
MIT researchers have found a new family of highly active catalyst materials that provides the best performance yet in the oxygen evolution reaction (OER) in electrochemical water-splitting—a key requirement for energy storage and delivery systems such as advanced fuel cells and lithium-air batteries. —Grimaud et al. “We
Another attractive aspect of this technology is that lithium metal can be produced from salt solutions (e.g., In other words, energy from the sun can be “stored” in the metal, and then be used on demand by reacting the lithium in the fuel cell. Recharging the battery would be a matter of replacing the lithium metal cell.
wind and solar). In some studies it has been noted that the adequate BEV range perceived by the customer could be lower if the recharging time would be sufficiently short. For a 100 mile-range BEV requiring ≈21 kWh net , complete recharge could be accomplished within ≈60 min. Source: Gröger et al. Click to enlarge. kgH 2 /min.
Lithium is a naturally occurring element found in the earth’s crust and is usually found in mineral deposits, brine pools, and salt flats. Lithium is commonly used for rechargeable batteries, particularly in Electric Vehicles (EVs). LFP is an excellent technology for removing the reliance on cobalt.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content