This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Argonne National Laboratory, which has contributed heavily to the research and development of Li-ion battery technology, is now pursuing research into Lithium-air batteries. Li-air batteries use a catalytic air cathode that converts oxygen to lithium peroxide; an electrolyte; and a lithium anode.
The US Department of Energy (DOE) awarded more than $54 million—leveraging approximately an additional $17 million in cost share from the private sector—for 13 projects to advance transformational technologies and materials that can help manufacturers significantly increase the energy efficiency of their operations and reduce costs.
optioned a PNNL-developed method for building titanium oxide and carbon structures that greatly improve the performance of lithium-ion batteries. The new material stores twice as much electricity at high charge/discharge rates as current lithium ion batteries, and creates increased battery capacity and a longer cycle life.
NC State University. Medical University of South Carolina. Columbia University. Li-Air Battery : Development Of Ultra-high Specific Energy Rechargeable Lithium/Air Batteries Based On Protected Lithium Metal Electrodes. A123 Systems, Rutgers University). of Georgia). Clemson Univ., 5,000,000.
Vorbeck Materials , a startup company based in Jessup, Maryland, is using a Pacific Northwest National Laboratory (PNNL)-developed method for developing graphene for better lithiumair and lithium sulfur batteries.
Clemson University will develop a lightweight, multi-material passenger vehicle body structure, addressing challenges in joining dissimilar materials. Novel Organosulfur-Based Electrolytes for Safe Operation of High Voltage Lithium-ion Batteries Over a Wide Operating Temperature. SUNY University @ Stony Brook. General Motors.
research facilities for scientists from universities, industry, and other laboratories, as well as to ORNL researchers: Building Technologies Research and Integration Center (BTRIC). The origin of such anomalous behavior is the competition between the transport of lithium and oxygen and the accompanying electrochemical kinetics.
BioSolar’s cathode technology, which has been the primary focus of its university-led research and development efforts, is a novel conductive polymer material that leverages fast redox-reaction properties rather than conventional lithium-ion intercalation chemistry to enable rapid charge and discharge. Earlier post.).
The Commonwealth of Kentucky, the University of Kentucky (UK) and University of Louisville (U of L) are partnering with the US Department of Energy’s (DOE) Argonne National Laboratory to establish a national Battery Manufacturing R&D Center to help develop and deploy a domestic supply of advanced battery technologies for vehicle applications.
Quantumscape several days ago posted 11 job openings, seeking a manager or director of battery manufacturing operations; a process engineering manager to lead a team in the development of a new energy storage technology from initial process concept through demonstration of stable production; and R&D technicians, battery engineers and scientists.
Ford is exploring a variety of “beyond Li-ion” solutions, including Lithium-sulfur, Lithium-air and solid-state lithium-ion batteries. Scalability, in terms of manufacturing for mass automotive adoption, is also an unknown. However, SSBs suffer from low current density, and low cycle life.
An international team from MIT, Argonne National Laboratory and Peking University has demonstrated a lab-scale proof-of-concept of a new type of cathode for Li-air batteries that could overcome the current drawbacks to the technology, including a high potential gap (>1.2 V) —Zhu et al.
MIT researchers have found a new family of highly active catalyst materials that provides the best performance yet in the oxygen evolution reaction (OER) in electrochemical water-splitting—a key requirement for energy storage and delivery systems such as advanced fuel cells and lithium-air batteries. —Grimaud et al.
In addition, advances in exploration technology could help to identify new lithium deposits in the future. Examples of this development include solid-state batteries , lithium sulphur and lithium-air batteries. Recycling these batteries could cut lithium supply requirements by about a tenth in 2040.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content