This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The battery, which can be lowcost and reliable in terms of safety, provides another chemistry for post Li-ion batteries, they suggest, and with higher practical energy densities than Li-air systems for supporting applications including electric vehicles and large-scale grid energy storage. —Wang et al. —Wang et al.
This project will develop and optimize a novel, engineered microorganism that produces a biodiesel-equivalent fuel from renewable hydrogen and carbon dioxide, at costs of less than $2.50 Water will be the primary byproduct. A novel metal complex for electrolysis of water will be used to generate the hydrogen at high rates.
Theoretically, with renewable electricity, the 95 gCO 2 /km target could also be met by extended range electric vehicles with 40 miles all-electric range if 50% of driving is powered by the battery, or by fuel cell electric vehicles (FECVs), with hydrogen produced by water electrolysis. can be realized at lowcost, the authors suggest.
The top two awards, one of $9 million to a project led by Dow Chemical, and one of $8.999 million to a project led by PolyPlus, will fund projects tackling, respectively, the manufacturing of low-cost carbon fibers and the manufacturing of electrodes for ultra-high-energy-density lithium-sulfur, lithium-seawater and lithium-air batteries.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content