This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Schematic illustration of the aqueous rechargeable lithium battery (ARLB) using the coated lithium metal as anode, LiMn 2 O 4 as cathode and 0.5 Researchers from Fudan University in China and Technische Universität Chemnitz in Germany have developed an aqueous rechargeable lithium battery (ARLB) using coated Li metal as the anode.
The awards are being made to companies and universities across New York that are involved in advanced research and development of energy storage applications that could benefit transportation, utility Smart Grid applications, renewable energy technologies, and other industries. million in cost-sharing by recipients for a total of $15.3
Vorbeck Materials , a startup company based in Jessup, Maryland, is using a Pacific Northwest National Laboratory (PNNL)-developed method for developing graphene for better lithiumair and lithium sulfur batteries.
The top two awards, one of $9 million to a project led by Dow Chemical, and one of $8.999 million to a project led by PolyPlus, will fund projects tackling, respectively, the manufacturing of low-cost carbon fibers and the manufacturing of electrodes for ultra-high-energy-density lithium-sulfur, lithium-seawater and lithium-air batteries.
NC State University. Medical University of South Carolina. Columbia University. The critical barrier to wider deployment of electric vehicles is the high cost and low energy of today’s batteries. A123 Systems, Rutgers University). of Georgia). Clemson Univ., of South Carolina). europaea; Product: Butanol.
Vorbeck, a manufacturer and developer of applications using its proprietary graphene material ( earlier post ), optioned the technology for use in a graphene-based electrode for lithium-air and lithium-sulfur batteries. PEM fuel cells are primarily used for backup power.
Clemson University will develop a lightweight, multi-material passenger vehicle body structure, addressing challenges in joining dissimilar materials. Novel Organosulfur-Based Electrolytes for Safe Operation of High Voltage Lithium-ion Batteries Over a Wide Operating Temperature. SUNY University @ Stony Brook. AOI 6: Low?cost
Carbon is seen as an attractive potential cathode material for aprotic (non-aqueous) Lithium-air batteries, which are themselves of great interest for applications such as in electric vehicles because of the cells’ high theoretical specific energy. A team at the University of St. Andrews (Scotland) led by Prof.
Ford is exploring a variety of “beyond Li-ion” solutions, including Lithium-sulfur, Lithium-air and solid-state lithium-ion batteries. A Li-air battery, with its air cathode, is a low-cost system, Anandan said. Solid-state use solid electrodes and a solid electrolyte material.
Advanced liquid electrolytes for lithium-ion cells under extreme conditions, such as extreme fast charging, and mechanical, thermal, or electrical abuse. Novel liquid electrolytes for lithium-sulfur cells that improve the overall stability and performance of these cells. Lithium-sulfur and lithium-air battery cell development.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content