This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers from the Illinois Institute of Technology (IIT), Argonne National Laboratory, and the University of Illinois at Chicago have developed a room-temperature solid-state lithium-air battery that is rechargeable for 1,000 cycles with a low polarization gap and can operate at high rates. Ngo, Paul C. Redfern, Christopher S.
Sample UDRI solid-state, rechargeable lithium-air batteries, and Dr. Binod Kumar. Engineers at the University of Dayton Research Institute (UDRI) have developed a solid-state, rechargeable lithium-air battery. Abraham (2010) A Solid-State, Rechargeable, Long Cycle Life Lithium–Air Battery. Click to enlarge.
Long-term discharge curve of the newly developed lithium-air cell. Researchers at Japan’s AIST (National Institute of Advanced Industrial Science and Technology) are developing a lithium-air cell with a new structure (a set of three different electrolytes) to avoid degradation and performance problems of conventional lithium-air cells.
Diagram of the STAIR (St Andrews Air) cell. Oxygen drawn from the air reacts within the porous carbon to release the electrical charge in this lithium-air battery. Lithium-air batteries use a catalytic air cathode in combination with an electrolyte and a lithium anode. Click to enlarge.
Researchers at Japan’s National Institute for Materials Science (NIMS) and the NIMS-SoftBank Advanced Technologies Development Center have developed a lithium-air battery with an energy density of more than 500 Wh/kg—significantly higher than currently lithium ion batteries.
Argonne National Laboratory, which has contributed heavily to the research and development of Li-ion battery technology, is now pursuing research into Lithium-air batteries. Li-air batteries use a catalytic air cathode that converts oxygen to lithium peroxide; an electrolyte; and a lithium anode.
In a paper published in the Journal of the American Chemical Society , they reported a charge/discharge potential gap smaller than 50 mV at a current density of 0.16 mA/cm 2 —the lowest ever reported in metal-oxygen batteries, according to the team.
A team of researchers at MIT led by Professor Yang Shao-Horn have found that gold-carbon (Au/C) and platinum-carbon (Pt/C) catalysts have a strong influence on the charge and discharge voltages of rechargeable lithium-air (Li-O 2 ) batteries, and thus enable a higher efficiency than simple carbon electrodes in these batteries.
This study showed that using metal oxides as the oxygen electrode could potentially enable a lithium-air battery to maintain its performance over many cycles of operation. The observational method this team developed could have implications for studying reactions far beyond lithium-air batteries, Yang Shao-Horn, the Gail E.
Researchers at the Illinois Institute of Technology (IIT) and US Department of Energy’s (DOE) Argonne National Laboratory have developed a lithium-air battery with a solid electrolyte. A lithium-air battery based on lithium oxide (Li 2 O) formation can theoretically deliver an energy density that is comparable to that of gasoline.
It''s hard to keep track of all the future battery technology candidates, but lithium-air battery technology is among the most widely-researched. Its biggest draw is the potential to store three times the energy in batteries the same size and weight of today''s electric vehicles--providing huge increases in range.
Lithium-air EV batteries could help decarbonize aviation, shipping, and railways if only some key technology hurdles can be leaped. The post Lithium-Air EV Batteries Tapped For Net Zero Economy Of The Future appeared first on CleanTechnica.
Lithium-air batteries, with high energy density, low weight and useful stability, are a major candidate for future electric car batteries. Toyota is researching solid-state lithium-ion.'
General schematic of a lithium-air battery. The team plans to explore rechargeable Lithium-Air systems, which could offer 10 times the energy capacity of lithium-ion systems. Original lithium-air batteries—aqueous batteries, or with an aqueous electrolyte/air interface—were primary cells—i.e.,
Today on Green Car Reports: Volkswagen promises more-efficient lithium-air batteries, Audi plans more plug-in hybrids, and mass-transit usage grows. Volkswagen says it can triple battery capacity with lithium-air technology. All this and more on Green Car Reports.
Department of Energy’s (DOE) Argonne National Laboratory have developed a lithium-air battery that could make that dream a reality. […] The post New design for lithium-air battery could offer much longer driving range appeared first on Electric Cars Report.
A team from Hanyang University (Korea) and University of Rome Sapienza (Italy) have demonstrated a lithium–air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh g carbon ?1 1 and 3 A g carbon ?1 1 , respectively. Nature Chemistry doi: 10.1038/nchem.1376 1376 10.1038/nchem.1376.
A new lithium-air battery has four times the energy density of lithium-ion batteries and will extend electric car range significantly. The post Electric car range significantly boosted by lithium-air battery revelation appeared first on Innovation News Network.
A team from Japan’s AIST (National Institute of Advanced Industrial Science and Technology) reports on the development of a “lithium–air capacitor–battery based on a hybrid electrolyte” in a paper in the RSC journal Energy & Environmental Science. Earlier post.). Earlier post.). —Wang et al. Energy Environ.
Fossil fuels may not be the cleanest way of powering us between two points on a map, but there''s little doubt they offer convenience. So far, scientists have struggled to find batteries for electric cars that match the huge amounts of energy stored in a gallon of gasoline or diesel. As a result we get big, heavy batteries with relatively short.'
In earlier lithium-air battery research that Shao-Horn and her students reported last year, they demonstrated that carbon particles could be used to make efficient electrodes for lithium-air batteries. Source: Mitchell et al. Click to enlarge. A team at MIT, led by Carl V. ” Resources. Mitchell, Betar M.
Asahi Kasei and Central Glass will join IBM’s Battery 500 Project team to collaborate on far-reaching research to develop practical Lithium-air batteries capable of powering a family-sized electric car for approximately 500 miles (800 km) on a single charge—i.e., Wilcke (2010) Lithium-Air Battery: Promise and Challenges.
Researchers at startup Liox Power, a California-based company developing rechargeable Li-air batteries, have demonstrated for the first time the operation of a lithium-air battery with a Li anode in a straight-chain alkyl amide electrolyte solvent (N,N-dimethylacetamide (DMA)/lithium nitrate (LiNO 3 )).
We'd be the first to point out that many of the electric car owners currently out on the roads have had absolutely no trouble with the 100 or so miles they get from a full charge. However, it'd be foolish to assume that some people really don't need more than that, and as a result there's always room for an EV with greater range. Improvements to.
The elimination of the lithium metal anode addresses one of the major issues affecting the development of the lithium-air battery: the safety hazard of the anode. “ The reaction sequence is complex, proceeding via a series of steps involving an intermediate O 2 ?• 1 and 3 A g carbon ?1 1 , respectively. Earlier post.).
The US Department of Energy (DOE) has awarded 24 million hours of supercomputing time to investigate materials for developing lithiumair batteries, capable of powering a car for 500 miles on a single charge. Argonne is committed to developing lithiumair technologies. Earlier post.)
Scientists at the National Institute of Advanced Industrial Science and Technology in Japan have made an electrode for a lithium-air battery using a pencil. Haoshen Zhou and Yonggang Wang designed a battery in which the lithium is encapsulated by an organic electrolyte topped with a ceramic protection layer.
Researchers at Mie University in Japan have developed a new protected lithium electrode for aqueous lithium/air rechargeable batteries. Lead researcher Nobuyuki Imanishi said that the system has a practical energy density of more than 300 Wh/kg, about twice that of many commercial lithium-ion batteries.
Although lithium-air batteries—with high theoretical specific energies of up to ? Yifei Mo, Shyue Ping Ong, and Gerbrand Ceder (2011) First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery. Physical Review B. doi: 10.1103/PhysRevB.84.205446. 84.205446.
A study led by researchers from Argonne National Laboratory reinforced that electrolyte solvent stability plays a key role in the performance of Lithium-air batteries, and that making advances in new electrolytes will be a key factor in reducing the large overpotential and improving reversibility of Li-air batteries.
General Motors is quietly conducting research into Lithium-Air batteries, the next Holy Grail of electric vehicle technology, according to a Friday article in The New York Times.
Andrews in the UK report on the use of activated Lithium-metal-oxides as catalytic electrodes for high-capacity lithium-air batteries in the journal Electrochemical Solid-State Letters. Argonne began ramping up its efforts on Li-air batteries in 2009. Earlier post.).
Zhang et al. Monotonic growth in global demand for critical metals to 2050 is the most prevalent trend. It’s mainly driven by the electric vehicle market penetration and battery technology development.
The report— Cost and performance of EV batteries —describes the current state of development and cost of batteries, before mapping the future cost and performance of lithium-ion batteries out to 2030. It results in a higher cost per kWh for a PHEV compared to pure battery electric vehicle.
In an open access paper published in the International Journal of Smart and Nano Materials , researchers from the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences review significant developments and remaining challenges of practical Li–air batteries and the current understanding of their chemistry.
The 19 projects, which include two lithium-air efforts, will leverage $7.3 Three projects to develop improved batteries for use in stationary grid-scale energy storage applications including lithium-air, lithium-ion, and lithium-titanate batteries. Murray, Jr., million in funding. SUNY Binghamton.
The companies also today signed a binding agreement to commence collaborative research on lithium-air batteries. This agreement marks the second phase of collaborative research into next-generation lithium-ion battery cells that commenced in March 2012. Li-air battery. Earlier post.). Earlier post.) liter and 2.0-liter
A new study by a team at MIT led by Dr. Yang Shao-Horn and Dr. Carl Thompson sheds more light on the morphological evolution of Li 2 O 2 particles in Lithium-air batteries. Lithium-air (Li?O
These are the iron, carbon and VB 2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000 (for Fe to Fe(III)); 19,000 (C to CO 3 2- ) and 27,000 Wh liter -1 (VB 2 to B 2 O 3 + V 2 O 5 ), compared to 6,200 Wh liter -1 for the lithium-air battery. Earlier post.] —Licht et al.
Andrews in Scotland report in a paper in the journal Nature Materials that titanium carbide (TiC) may represent a viable, stable cathode for rechargeable lithium-air batteries. Li-air batteries are receiving intense interest because of their extremely high theoretical specific energy.
Lithium-air batteries, with a theoretical gravimetric energy density of ?3500 Goddard, III, Hyungjun Kim, and Kisuk Kang (2013) Toward a Lithium–“Air” Battery: The Effect of CO2 on the Chemistry of a Lithium–Oxygen Cell. —Lim et al. Journal of the American Chemical Society doi: 10.1021/ja4016765. Batteries'
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content