article thumbnail

Researchers in China report 711.3 Wh/kg Li-ion battery cell

Green Car Congress

In a paper in Chinese Physical Letters , researchers from the Chinese Academy of Sciences report manufacturing practical pouch-type rechargeable lithium batteries with a gravimetric energy density of 711.3 Current advanced practical lithium-ion batteries have an energy density of around 300 Wh⋅kg −1. —Li et al.

Li-ion 474
article thumbnail

Researchers use carbon-based anodes with “bumpy” surfaces for Li-ion batteries that last longer in extreme cold

Green Car Congress

the key to addressing the low-temperature capacity loss lies in adjusting the surface electron configurations of the carbon anode to reinforce the coordinate interaction between the solvated Li + and adsorption sites for Li + desolvation and reduce the activation energy of the charge-transfer process. . … —Lu et al.

Li-ion 418
article thumbnail

Tohoku team develops new electrolyte to support rechargeable calcium batteries

Green Car Congress

Scientists from Tohoku University have developed a new fluorine-free calcium (Ca) electrolyte based on a hydrogen (monocarborane) cluster that could potentially realize rechargeable Ca batteries. High-energy-density and low-cost calcium (Ca) batteries have been proposed as ‘beyond-Li-ion’ electrochemical energy storage devices.

Recharge 418
article thumbnail

New aqueous rechargeable lithium battery shows good safety, high reliability, high energy density and low cost; another post Li-ion alternative

Green Car Congress

Schematic illustration of the aqueous rechargeable lithium battery (ARLB) using the coated lithium metal as anode, LiMn 2 O 4 as cathode and 0.5 mol l -1 Li 2 SO 4 aqueous solution as electrolyte. mol l -1 Li 2 SO 4 aqueous solution as electrolyte, an ARLB is built up. Wang et al. Click to enlarge. —Wang et al.

Li-ion 281
article thumbnail

Fudan University team develops superfast charging Li-ion battery cathode

Green Car Congress

Researchers at Fudan University with colleagues at the Shanghai Academy of Spaceflight have developed a LiMn 2 O4 material for a Li-ion battery cathode that exhibits superfast charging capabilities. M Li 2 SO 4 aqueous solution. Their paper is published in the ACS journal Nano Letters. Its charge capacity can be 59.3

Li-ion 312
article thumbnail

Sion Power reports 400 Wh/kg, 700 Wh/L and 350 cycles under 1C for Li-ion battery with Li-metal anode technology

Green Car Congress

Sion Power reported that a Licerion-Ion system has achieved 400 Wh/kg, 700 Wh/L and 350 cycles under 1C discharge conditions. Sion combines its protected lithium anodes with intercalated metal oxide cathodes typically used for Li-ion batteries (Licerion-Ion) and with advanced sulfur cathodes (Licerion-Sulfur).

Li-ion 354
article thumbnail

Volvo C40 Recharge LCA highlights huge potential of manufacturing and charging EVs with clean energy

Green Car Congress

Volvo Cars has published a lifecycle analysis report on its second fully electric car, the C40 Recharge, which shows the potential CO 2 reductions if a car is built and charged using clean energy sources. Starting with the XC40 Recharge, its first electric car launched in 2019, Volvo Cars issues an LCA report for each fully electric model.

Recharge 433