Remove Lead Acid Remove Low Cost Remove Sodium
article thumbnail

Faradion and Phillips 66 to develop lower cost and higher-performing sodium-ion battery materials

Green Car Congress

UK-based Faradion, a developer of sodium-ion battery technology ( earlier post ), and Phillips 66 have launched a new technical collaboration to develop lower-cost and higher-performing anode materials for sodium-ion batteries. Earlier post.).

Sodium 269
article thumbnail

Reliance buys Na-ion battery developer Faradion

Green Car Congress

Reliance New Energy Solar Ltd, a wholly owned subsidiary of Reliance Industries Ltd, will acquire 100% shareholding in sodium-ion battery developer Faradion Limited ( earlier post ) for an enterprise value of £100 million (US$135 million). Sodium is the sixth-most abundant element on the planet.

Sodium 199
article thumbnail

Industry study finds lead-acid to remain most wide-spread automotive energy storage for foreseeable future; new chemistries continue to grow

Green Car Congress

The study, which provides a joint industry analysis of how different types of batteries are used in different automotive applications, concludes that lead-based batteries will by necessity remain the most wide-spread energy storage system in automotive applications for the foreseeable future. stop-in-motion, voltage stabilisation).

Lead Acid 304
article thumbnail

Chevron invests in Prussian Blue battery tech company Natron Energy; stationary storage for EV charging stations

Green Car Congress

Natron Energy , a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has closed a strategic investment by Chevron Technology Ventures (CTV) to support the development of stationary energy storage systems for demand charge management at electric vehicle (EV) charging stations.

Chevron 288
article thumbnail

Penn State team uses 3D cross-linked polymer sponge to stabilize Li-metal anodes

Green Car Congress

Using metals as anodes in metal batteries is considered as the most promising approach to achieve high energy density in next-generation batteries, and it is applied in commercial low-cost batteries such as zinc (Zn) metal batteries and lead acid batteries.

Polymer 230
article thumbnail

Pike Research forecasts hybrid electric locomotive sales could reach nearly 500 units from 2011 to 2020; to utilize 514 MWh of battery capacity by 2020

Green Car Congress

Most of this capacity will be in lead acid and advanced lead acid batteries, with a portion of the market utilizing sodium metal halide and lithium-ion batteries. Hybrid locomotives are an emerging alternative to these approaches that utilized stored energy from batteries. —Dave Hurst.

2020 218
article thumbnail

PNNL study outlines requirements for grid storage, reviews four electrochemical energy storage systems: vanadium redox flow, Na-beta, Li-ion and lead-carbon

Green Car Congress

published in the ACS journal Chemical Reviews , reviews in detail four stationary storage systems considered the most promising candidates for electrochemical energy storage: vanadium redox flow; sodium-beta alumina membrane; lithium-ion; and lead-carbon batteries. Sodium-beta alumina membrane battery. Lead-carbon battery.

Li-ion 231