This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Analysis by researchers at the Helmholtz Institute Ulm (HIU) of the Karlsruhe Institute of Technology (KIT) suggests that, given the foreseen scaling of battery demand up to 2050, each may face supply risks, albeit for different reasons. Passerini (2018) “A cost and resource analysis of sodium-ion batteries“ Nat. —Vaalma et al.
CELEST pools the know-how of 29 institutes of its partners: Karlsruhe Institute of Technology (KIT), Ulm University, and the Center for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW). The Center for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW) and Gießen University are also partners of this proposal.
The batteries that use sodium instead of the pricey and rare lithium are the ones that are the closest to being on the market. The charge point operator (CPO) can store grid energy when it is affordable or locally produced solar energy and utilise it as backup power for rapid DC charging or during peak hours when electricity is costly.
Originally targeting three industries, the scheme was later expanded to include 14 sectors including automobiles, auto components, electronic products, solar PV modules, advanced chemistry cell (ACC) battery among others. It aims to promote import substitution besides generating employment opportunities.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content