This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. Image credit: Roksana Rashid, McGill University.
Researchers have developed a nickel-stabilized, ruthenium dioxide (Ni-RuO 2 ) anode catalyst for proton exchange membrane (PEM) water electrolysis. The Ni-RuO 2 catalyst shows high activity and durability in acidic OER for PEM water electrolysis. Boyang Li of the University of Pittsburgh is co-lead author of the paper.
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. Song et al. 2301206120
Both half reactions of water electrolysis—hydrogen and oxygen evolution—are unfortunately slow and require a lot of power. The material can be used as either an anode or a cathode, and demonstrates high activity and stability in the production of hydrogen and oxygen in the electrolysis of water. Zhang, S.L., and Lou, X.W.
Ricardo will be testing the prototype at the engine development facility at the University of Brighton—the company’s long-term combustion engine research partner. —Adrian Greaney, Director of Technology and Digital at Ricardo Automotive and Industrial EMEA Division.
The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. Prototype testing of Sparc Hydrogen’s reactor in real world conditions is the culmination of more than 5 years of research and development work conducted by the University of Adelaide and Flinders University.
The flagship project MethanQuest was launched in September 2018, and on it a total of 29 partners from research, industry and the energy sector have come together to work on processes for producing hydrogen and methane from renewables and for using them to achieve climate-neutral mobility and power generation.
Engineers at the University of Pittsburgh Swanson School of Engineering are using membrane distillation technology to enable drillers to filter and reuse the produced water in the oil and gas industry, in agriculture, and other beneficial uses. The team is back in the lab to find a fix. Desalination. doi: 10.1016/j.desal.2021.115513.
Researchers at the University of Oregon have advanced the effectiveness of the catalytic water dissociation reaction in bipolar membranes. The technology behind bipolar membranes, which are layered ion-exchange polymers sandwiching a water dissociation catalyst layer, emerged in the 1950s. —Oener et al.
Researchers at the University of have developed an unusually rapid method to deliver cost-effective algal biocrude in large quantities using a specially-designed jet mixer. bacteria, fungi, and algae) may be grown on non-arable land and with saline water, wastewater or/and produced water from mineral and petroleum extraction.
A research group led by Associate Professor Takashi Tachikawa of Kobe University’s Molecular Photoscience Research Center has developed a strategy that greatly increases the amount of hydrogen produced from sunlight and water using hematite (??Fe Mesocrystal photoanode formation and photochemical water splitting characteristics.
BASF and the Catholic University of the North (UCN) in Antofagasta, Chile, have signed a collaboration agreement to promote research, development and innovation in mining. The aim of this collaboration is to strengthen the cooperation between academia, students and industry experts. Source: BASF Mining Solutions.
New hydrogen production technology developed at the University of British Columbia (UBC) will be tested in a $7-million project between UBC, the government of Alberta and Alberta utility company ATCO. SMR still emits a significant amount of carbon dioxide and uses large quantities of water and energy.
Yavuz of King Abdullah University of Science and Technology (KAUST), Prof. Bo Liu from University of Science and Technology of China (USTC), and Prof. A) CO 2 hydrate where CO 2 molecules are trapped in water clusters at high pressures and low temperatures. A team of international researchers led by Professor Cafer T.
Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. Splitting water requires an applied voltage of at least 1.23 V and up to 1.5
In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals. Kazunari Domen from The University of Tokyo, Prof. Lianzhou Wang from The University of Queensland, Prof. Credit: DICP. —Wang et al.
Researchers at the University of Melbourne (Australia) have demonstrated a method of direct hydrogen production from air— in situ capture of freshwater from the atmosphere using hygroscopic electrolyte and subsequent electrolysis powered by solar or wind with a current density up to 574 mA cm ?2.
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
Researchers from the University of Adelaide and Tianjin University have successfully split seawater without pre-treatment to produce green hydrogen. The use of vast amounts of high-purity water for hydrogen production may aggravate the shortage of freshwater resources. A paper on the work is published in Nature Energy.
SunHydrogen , the developer of a technology to produce renewable hydrogen using sunlight and water, has extended its sponsored research agreement with the University of Iowa through 31 August 2020. The University of Iowa has been a key and productive partner in the development of our GEN 1 panels.
Researchers at the University of Oklahoma, in collaboration with the University of Tulsa, have a novel approach for the water-assisted upgrading of the renewable chemical furfural, doubling or tripling the rate of conversion. Energy and water are interconnected in the production of renewable fuels. —Zhao et al.
Researchers at Linköping University and Umeå University in Sweden have developed a new and efficient way to use electrocatalysis to produce hydrogen gas from water using electrodes with nanotruss structures of iron oxide. The basic process, sputtering, is a commonly used coating method used in industry and research.
Scottish Enterprise, Transport Scotland and the Hydrogen Accelerator, based at the University of St Andrews, have appointed Arcola Energy and a consortium of industry leaders in hydrogen fuel cell integration, rail engineering and functional safety to deliver Scotland’s first hydrogen powered train.
Researchers at the University of Oxford have developed a method to convert CO 2 directly into aviation fuel using a novel, inexpensive iron-based catalyst. These are important raw materials for the petrochemical industry and are presently also only obtained from fossil crude oil. The final product is usually a crystallized material.
Auburn University researchers are leading a $2-million US Department of Energy Co-Optima project ( earlier post ) that will evaluate renewable butyl acetate (BA) as a bio-based fuel additive that can be blended with diesel fuel to reduce soot and greenhouse gas emissions and yield cleaner engine operation in cold-weather conditions.
Furthermore, the potential to use eFuels instead of hydrogen can provide a significantly lower total cost of ownership and allow for faster deployment of fuel cell technology across the industry. Fast Startup Time: Develop extremely stable fuel-cells that can start under nearly water-saturated conditions.
The proposed 125-foot vessel will take three years to design, build, and commission, and replace Research Vessel Robert Gordon Sproul , which has served thousands of University of California students in its nearly 40 years of service but is nearing completion of its service life.
Researchers at the University of British Columbia (UBC) have used a plasma pre-treatment to achieve through-plane wettability of carbon layers in a fuel cell electrode. For the proton exchange membrane fuel cells (PEMFCs), an optimal balance of water level is critical for high performance and durability. 2018.07.005.
The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) announced $11 million in funding for 7 projects in the fourth and fifth cohorts of the agency’s OPEN+ program: Energy-Water Technologies and Sensors for Bioenergy and Agriculture. Energy-Water Technologies cohort.
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 The project concerns the production of hydrogen at scale from offshore floating wind in deep water locations. Led by Cranfield University. Contract value: £7.44 million (US$9.7
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round.
Researchers at the University of Michigan, McGill University and McMaster University have developed a binary copper?iron 2 using industry-ready silicon photoelectrodes with an impressive methane Faradaic efficiency of up to 51%, leading to a distinct turnover frequency of 2,176 h ?1 1 under air mass 1.5
Researchers at KAUST have developed and used a novel way of increasing the chemical reactivity of a two-dimensional molybdenum disulfide material to produce a cheap and effective catalyst for water splitting to produce hydrogen. This technique may also have potential benefits for other manufacturing industries. Source: KAUST.
Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have developed a continuous electrically-driven membrane process which successfully enriches lithium from seawater samples of the Red Sea by 43,000 times (i.e., to 9013.43 ppm) with a nominal Li/Mg selectivity >45 million.
ETH Zurich spin-off Synhelion has started the construction of DAWN—its own industrial plant to produce synthetic fuels using solar heat. Located in Jülich, Germany, the facility will demonstrate the entire process from concentrating sunlight to producing synthetic liquid fuel on an industrial scale. Earlier post.)
The fourth GCxN cohort includes: Air Company (Brooklyn) – Transforming carbon dioxide captured from the air into impurity-free alcohols for spirits, fragrances, sanitizers and a variety of consumer industries, as well as for carbon-negative fuel in the long-term.
Researchers in Canada have demonstrated a new photochemical diode artificial photosynthesis system that can enable efficient, unassisted overall pure water splitting without using any sacrificial reagent. overall water splitting reaction. These free charges split water molecules into hydrogen and oxygen. … in neutral (pH?~?7.0)
In an open-acess paper published in Nature Communications , Griffith University (Australia) researchers report having enhanced the catalytic activity of CoSe 2 for oxygen evolution in water splitting by incorporating both Fe dopants and Co vacancies into atomically thin CoSe 2 nanobelts. —Dr Yuhai Dou, lead author.
Chemical engineers at UNSW Sydney and University of Sydney have developed a hybrid plasma electrocatalytic process for the production of sustainable (“green”) ammonia. Traditional production of ammonia via the Haber-Bosch process consumes about 2% of the world’s energy and accounts for 1% of the industrial world’s carbon dioxide emissions.
Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Normally, photocatalytic water-splitting using hematite results in oxygen being produced from the oxidation of the water.
Researchers at Monash University in Australia are proposing a roadmap to renewable ammonia being produced in the future at a scale that is significant in terms of global fossil fuel use. The challenge both for the existing industry, as well as a much-expanded renewable energy industry is, of course, economics. Generation 1.
The engine block is derived from a Cursor 11 commercial vehicle engine manufactured by FPT Industrial and has already served us for five years in various research projects. The results of the project are partly public and are discussed jointly among competitors in the vehicle industry. Water is formed as a by-product.
The seven projects, each involving a group of companies working in partnership on green transport technology, will each benefit from industry support, together with a government grant. million from the automotive industry. million awarded by government, matched by industry to a total £12.6 The £77 million is made up of £38.4
A team from the University of Cordoba in Spain and the University of Tehran in Iran has been searching for ways to increase hydrogen production by using microorganisms, specifically microalgae and bacteria. This knowledge may open new possibilities for the biohydrogen production from industrial wastes. —Fakhimi et al.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content