This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Now, researchers have detected a broad range of emerging synthetic antioxidants, called hindered phenol and sulfur antioxidants, in dust from electronic waste (e-waste) recycling workshops, possibly posing risks for the workers inside. An open-access paper on the work is published in ACS’ Environmental Science & Technology Letters.
Every year, Netherland-based student company TU/ecomotive produces an electric car with a team of 21 BA students from the Eindhoven University of Technology, with the aim of showing the world that a hypothetical, sustainable car of the future can be a reality today. Luca, the world’s first Zero-Waste car. Photo by Bart van Overbeeke.
The Rice lab of chemist James Tour has successfully extracted valuable rare earth elements (REE) from waste at yields high enough to resolve issues for manufacturers while boosting their profits. The activation strategy is feasible for various wastes including coal fly ash, bauxite residue, and electronic waste.
Washington State University researchers have developed an innovative way to convert waste polyethylene plastic to ingredients for jet fuel and other valuable products, making it easier and more cost-effective to reuse plastics. In the recycling industry, the cost of recycling is key. —Hongfei Lin.
The technologies work as a system that converts organic waste into renewable hydrogen gas for use as a biofuel. The system combines biology and electrochemistry to degrade organic waste—such as plant biomass or food waste—to produce hydrogen.
A team of scientists from LanzaTech, Northwestern University and the Department of Energy’s Oak Ridge National Laboratory have engineered a microbe to convert molecules of industrialwaste gases, such as carbon dioxide and carbon monoxide, into acetone and isopropanol (IPA). —Jennifer Holmgren, CEO of LanzaTech.
A new approach developed by researchers at the Norwegian University of Science and Technology (NTNU) could alleviate that situation a bit by using waste heat from other industrial processes. Energy experts say that the waste heat from Norway’s businesses and industries is the equivalent of 20 TWh of energy.
Biofuels producer Renewable Energy Group joined Iowa State University (ISU) at the BioCentury Research Farm (BCRF) to mark the start of a new hydrotreater pilot plant. REG converts waste and byproduct fats and oils into biodiesel and renewable diesel.
Texas A&M University (TAMU) engineering researchers have devised a simple, proliferation-resistant approach for separating out different components of nuclear waste. What is left behind is an assortment of radioactive elements, including unused fuel, that are disposed of as nuclear waste in the United States.
The National Circular Economy Roadmap found innovation is crucial to realizing Australia’s largest economic gains, which will come from designing new products and materials, including through advanced manufacturing, and in embracing new business models that will create domestic and export markets for waste streams.
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
Under the terms of the agreement, XL Fleet and Curbtender will jointly develop a series of battery electric (BEV) and plug-in hybrid electric (PHEV) commercial trucks for use in waste management applications. The Quantum is the US WasteIndustry’s #1 selling small rear loader. Curbtender Quantum.
The proposed plant would take more than 500,000 tonnes each year of non-recyclable everyday household and commercial solid waste destined for landfill or incineration such as meal packaging, diapers and takeaway coffee cups and convert it into more than 60 million liters (15.85
Researchers at MIT and Stanford University have developed new battery technology for the conversion of low-temperature waste heat into electricity in cases where temperature differences are less than 100 degrees Celsius. C, which accounts for a large proportion of potentially harvestable waste heat. —Gang Chen.
Initial life cycle assessments demonstrate either reduced carbon emissions compared with current methods of carbon black production or the use of bio-based or waste feedstock sources. A high-quality silica has been produced from this waste ash. A high-quality silica has been produced from this waste ash.
Ohio University’s Institute for Sustainable Energy and the Environment was awarded two of the six awards, one that explores how coal waste can be reimagined as energy storage and the second aims to develop ultra-conductive carbon metal composite wire for electric motors. Earlier post.)
million grant to researchers at Texas A&M AgriLife Research to investigate potential discoveries for waste products used in lignocellulosic biofuel production, turning them into valuable agents used in producing commercial products such as biodiesel and asphalt binding agents. in Washington State and the University of Tennessee.
A team from the University of Cordoba in Spain and the University of Tehran in Iran has been searching for ways to increase hydrogen production by using microorganisms, specifically microalgae and bacteria. This knowledge may open new possibilities for the biohydrogen production from industrialwastes. Resources.
Michigan will enable four new mobility services to help address challenges across the state related to sustainable transit, roadway safety, parking and staffing shortages in the service industry. In partnership with key universities, four companies—Bluecity, GEKOT Inc., Mouvit ($100,000).
Researchers at the University of have developed an unusually rapid method to deliver cost-effective algal biocrude in large quantities using a specially-designed jet mixer. Technological and economic barriers to industrial scale up remain, with microorganisms (e.g., algae) harvesting ranking among the main challenges.
The Dearman project is to deliver a production-feasible waste-heat recovery system for urban commercial vehicles, which offers life-cycle CO 2 savings of up to 40%; fuel savings of 25%, with the potential of up to almost 50%; and potential payback in less than three years. Earlier post. ). The IDP10-funded project will cost £3.25
A team led by researchers at the University of Cordoba (Spain) have used a CaO alkaline heterogeneous catalyst to produce what they call a “second-generation biodiesel” blend composed of 2:1 molar mixture of conventional fatty acid methyl esters (FAME, or regular biodiesel) and monoglyceride (MG).
The sorbent’s thermochemical properties were also characterized using differential scanning calorimetry and thermogravimetry at the University of California-Davis. The more versatile the sorbent is, the more options there are for industry to supply the lithium we’re going to need for energy storage.
A research team at Monash University (Australia) led by Professor Dan Li of the Department of Materials Engineering has developed a new strategy to engineer graphene-based supercapacitors (SC), resulting in an energy density of 60 Wh/liter—comparable to lead-acid batteries and around 12 times higher than commercially available SCs.
a leading waste-to-biofuels and chemicals producer, has completed a C$280-million (US$223 million) investment round—its largest to date. The technology converts non-recyclable, non-compostable municipal solid waste into methanol, ethanol and other widely-used chemicals. Canada-based Enerkem Inc.,
The biocrude oil came from many different sources, including wastewater sludge from Detroit, and food waste collected from prison and an army base. The research showed that essentially any biocrude, regardless of wet-waste sources, could be used in the process and the catalyst remained robust during the entire run.
In Australia, QUT researchers and Mercurius Australia are partnering on a pilot plant to prove the economic viability of turning sugarcane waste into either jet and diesel fuel or chemicals that could be used to make plastic soft drink and beer bottles. Does not use enzymes or microbes therefore it is not sensitive to feedstock impurities.
Researchers at Henan Polytechnic University in China have hydrotreated the oil derived from hydrothermal liquefaction of scrap tires (STO) with waste engine oil (WEO) using five different activated carbon-supported noble metal catalysts—Pd/C, Pt/C, Ru/C, Ir/C, and Rh/C—for the production of liquid fuels. —Lou et al.
Researchers in China have developed a novel free-piston linear generator (FPLG) to recover exhaust waste heat efficiently from a vehicle engine. Beijing University of Technology, Collaborative Innovation Center of Electric Vehicles in Beijing, and Datong North Tianli Turbocharging Technology Co., —Tian et al. 2017.08.031.
As British Airways looks towards its Centenary next year, the airline, in collaboration with Cranfield University, has challenged academics from across the UK to develop a sustainable alternative fuel which could power a commercial aircraft on a long-haul flight, carrying up to 300 customers with zero net emissions.
In the Netherlands, Wageningen University & Research (WUR) and its partners have developed a new type of aviation fuel produced using bio-based waste streams from the agriculture industry. Although it does not yet meet all industry requirements for sustainable aviation fuel (SAF), it is getting close, the researchers say.
The UK Department for Transport has shortlisted 8 industry-led projects to receive a share of £15 million (US$21 million) in the Green Fuels, Green Skies (GFGS) competition for the development of sustainable aviation fuels (SAF) production plants in the UK. Research indicates that by 2040 the SAF sector could generate between £0.7
Researchers at Queen’s University Belfast have developed a novel green route to convert aluminium foil waste into highly active nano-mesoporous alumina (γ-Al 2 O 3 ) (designated as ACFL550). Alumina has direct application as a catalyst and catalyst support in the automotive and petroleum industries. 2 O and Al(NO 3 ) 3.9H
Volkswagen and Stanford University have developed in partnership a new catalyst production process to reduce the comparatively high cost of automotive fuel cell technology. However, the desired catalytic process only takes place on the surface of the platinum particles, which wastes large quantities of the cost-intensive material.
In recognition of the importance of teams in energy research, the EFRC program brings together researchers from multiple disciplines and institutions—including universities, national laboratories, industry, and nonprofit organizations—and combines them into synergistic, highly productive teams.
CSIRO, Australia’s national science agency, launched a new $68-million Hydrogen Industry Mission. CSIRO Chief Executive Dr Larry Marshall said the mission-based partnership was the key to creating a new industry for the future energy needs of Australia and the world.
Illinois Basin (Kentucky, Illinois, Indiana and Tennessee): Board of Trustees of the University of Illinois aims to lead a project to evaluate the domestic occurrence of strategic elements in coal, coal-based resources and waste streams from coal use. DOE Funding: $1,483,787. DOE Funding: $1,500,000. DOE Funding: $1,499,817.
AirCapture develops on-site, modular technology that captures CO 2 from the air using waste heat from manufacturing plants, enabling customer operations to go carbon neutral and even negative. We are converting common industrialwaste streams into product streams —Todd Brix.
A team led by Shuyan Gao (Henan Normal University, China) and Xiong Wen (David) Lou (Nanyang Technological University, Singapore) has now developed a novel, inexpensive, multifunctional electrode material based on cobalt (Co) and nickel (Ni) for efficient electrocatalytic hydrogen production.
The selected projects, led by universities, national laboratories, and the private sector aim to develop commercially scalable technologies that will enable greater domestic supplies of copper, nickel, lithium, cobalt, rare earth elements, and other critical elements. Columbia University. Harvard University.
As a result, the real-world laboratory project has taken a significant step forward towards its goal of progressively establishing a regional hydrogen economy on an industrial scale. This will allow the decarbonization of industry, mobility and the heating market to be tested under real conditions.
Sumitomo Electric Industries Ltd. is considering targeting its lower-temperature molten-salt electrolyte battery, being developed in partnership with Kyoto University ( earlier post ), to makers of electric and hybrid passenger cars, according to Bloomberg. Construction of the molten-salt electrolyte battery. Source: Sumitomo.
Kazunari Domen from The University of Tokyo, Prof. Lianzhou Wang from The University of Queensland, Prof. Kazuhiro Sayama from the National Institution of Advanced Industrial Science and Technology, and Prof.
Australia-based Sparc Technologies has entered into a strategic partnership agreement with the Queensland University of Technology (QUT). The partnership will begin with a project in the battery anode space with the development of a novel process for the production of hard carbon from bio-waste. Earlier post.).
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content