This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
This award marks the first Advanced Class Gas Turbines in the industry specifically designed and purchased as part of a comprehensive plan to sequentially transition from coal, to natural gas and finally to renewable hydrogen fuel, and creates a roadmap for the global industry to follow. Earlier post.). and Hitachi, Ltd.
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. mol/g cat /h with widely tunable H 2 /CO ratios between 1.6
Now, Argent has switched its fleet from petroleum diesel to Neste MY Renewable Diesel. We decided to switch to renewable diesel once our quality and availability concerns were satisfied. We decided to switch to renewable diesel once our quality and availability concerns were satisfied. Our experience has been positive.
While there is global potential to generate renewable energy at costs already competitive with fossil fuels, a means of storing and transporting this energy at a very large scale is a roadblock to large-scale investment, development and deployment. Generation 2 moves the Haber-Bosch process to renewable sources of hydrogen.
The flagship project MethanQuest was launched in September 2018, and on it a total of 29 partners from research, industry and the energy sector have come together to work on processes for producing hydrogen and methane from renewables and for using them to achieve climate-neutral mobility and power generation.
project for industrial-scale production of green hydrogen via the electrolysis of water using ?renewable renewable power, producing zero emissions. This will be powered by renewable energy generated by an Ørsted offshore ?wind Electrolysis splits water into hydrogen and oxygen gases. When powered by renewable ?energy,
Darling and Valero jointly announced that their 50/50 joint venture, Diamond Green Diesel (DGD), has received approval from both companies’ Boards of Directors to proceed with the construction of the renewable diesel production facility to be located at Valero’s Port Arthur, Texas refinery. The US restaurant industry generates an estimated 2.3
Electrolytic hydrogen production powered by renewable energy is seen as an environmentally friendly means to ameliorate global climate and energy problems. Both half reactions of water electrolysis—hydrogen and oxygen evolution—are unfortunately slow and require a lot of power. Zhang, S.L., and Lou, X.W.
thyssenkrupp recently introduced industrial-scale water electrolysis for large projects. By splitting water into hydrogen and oxygen, this technology delivers “green” hydrogen, a clean, CO 2 -free energy carrier. The only inputs needed are water and renewable electricity from wind, hydro power or photovoltaics.
million for the next phase of Gigastack, a new renewable hydrogen project, as part of the Department for Business, Energy and Industrial Strategy (BEIS) Hydrogen Supply Competition. Producing hydrogen has traditionally been associated with high carbon emissions, but by using renewable electricity—e.g., Earlier post.).
thyssenkrupp’s proprietary water electrolysis technology for the production of. conducted the necessary tests jointly in an existing water electrolysis plant operating as part of the Carbon2Chem project ( earlier post ) in Duisburg. The technology can also be used in other industries such as cement production.
Korea’s Ulsan National Institute of Science and Technology (UNIST) have developed a novel process for the production of hydrogen using various types of biomass, including lignin, as an efficient alternative to water oxidation as an electron source. Conventionally, water is considered a cheap and clean source of electrons; 2H 2 O ?
The Dutch Institute for Fundamental Energy Research ( DIFFER ) is partnering with Toyota Motor Europe (TME) to develop a device that absorbs water vapor, and splits it into hydrogen and oxygen directly using solar energy. One of these sustainable fuels is hydrogen, which can be used to store renewable energy.
a provider of long duration energy storage solutions, and Encore Renewable Energy, a developer of renewable energy generation and storage projects, jointly announced plans to develop the United States’ first long-duration, liquid-air energy storage system. Highview Power Storage, Inc.,
Minneapolis-based Xcel Energy will work with Idaho National Laboratory to demonstrate a system that uses a nuclear plant’s steam and electricity to split water. The resulting hydrogen will initially be used at the power plant, but it could eventually be sold to other industries. Earlier post.) Prairie Island.
Libertine says that free-piston range-extender engines can offer the efficiency of fuel cells, the durability of conventional engines and achieve carbon reductions using renewable fuels. This technology enables improved cold start performance using wet or ‘hydrous’ bioethanol fuel, a blend of 90% bioethanol and 10% water (E90W10).
In addition to hydrogen, other potential renewable fuels are being studied for future applications, and Wärtsilä engines are already capable of combusting 100% synthetic carbon-neutral methane and methanol. Hydrogen as part of the renewable electricity system of the future.
C above pre-industrial levels, and preferably 1.5 °C. One path to achieving this is with renewable synthetic fuels (e-fuels). Bosch outlines seven reasons why renewable synthetic fuels should be part of tomorrow’s mobility mix: Time. Renewable synthetic fuels have long since left the basic research phase. The fossil CO?
The Western Australia Government of Premier Mark McGowan will bring forward the Western Australian Renewable Hydrogen Strategy targets by a decade and invest $22 million to develop hydrogen supply, meet growing demand for the clean fuel and create jobs. The McGowan Government has committed $5.7
Westinghouse Electric Company launched its newest nuclear technology, the AP300 small modular reactor (SMR), a 300-MWe (900MWth) single-loop pressurized water reactor. Flexible performance provides a proven capability to stabilize modern renewable heavy electric grids, including fast load change capabilities to support variations in demand.
The technology developed by the UBC researchers—thermal methane cracking (TMC)—can produce up to 200 kilograms of hydrogen a day using natural gas, without using water, while reducing or eliminating greenhouse gas emissions. SMR still emits a significant amount of carbon dioxide and uses large quantities of water and energy.
The feed-stock reduction is achieved primarily by supplementing the process with oxygen and hydrogen produced by water electrolysis units that are powered by clean wind and solar generated electricity. DGF’s cellulosic feedstock does not impair food supply and is essentially water neutral. —Christopher J.
Demand for large-scale hydrogen projects from industry is steadily increasing. In response, H-TEC SYSTEMS, a subsidiary of MAN Energy Solutions, has developed a new Modular Hydrogen Platform (MHP)—a scalable system for the industrial production of green hydrogen.
The ambition is to generate one-third of its revenue from renewable energy projects and low-carbon solutions by 2025, and two-thirds by 2030. The blue crude process will use renewable electricity, water and CO 2 as feedstocks. The process starts when water vapor is broken down into hydrogen and oxygen.
Brookhaven National Laboratory, and the National Renewable Energy Laboratory (NREL) will work over the next few years to bring to market high-temperature proton exchange membrane (HT-PEM) fuel cells. HT-PEM fuel cells have potential to revolutionize the heavy-duty transportation industry.
To export hydrogen from regions with high renewable energy intensity to those lean in renewable energy requires hydrogen to be in a form that is transportable. … While one alternative is using green hydrogen produced by renewable power as input to the H-B process, this pathway has several disadvantages, according to the authors.
Green hydrogen, which is produced using an electrolyzer powered by renewable electricity to split water into hydrogen and oxygen, is expected to play an important role in the energy transition in coming decades with overall hydrogen demand expected to grow 5-7x over the next 30 years according to the Hydrogen Council.
Rolls-Royce intends to support research into green fuels in the Lausitz region of eastern Germany together with the State of Brandenburg, Brandenburg University of Technology Cottbus and other industrial partners. Synthetic fuels are a decisive factor in energy transition and the use of renewable energies.
Scientists at the USC Wrigley Institute for Environmental Studies on Santa Catalina Island, working with private industry, report that a new aquaculture technique on the California coast significantly increases kelp growth, yielding four times more biomass than natural processes. The researchers used a depth-cycling approach—i.e.,
LH2 Europe will use the abundant renewable electricity in Scotland to produce green hydrogen and market it at a competitive price with diesel. As a comparison, LNG tankers use ballast water to compensate the loss of weight following delivery to ensure enough draft.
Anelise Lara, the head of Petrobras’ refining, announced that the company is ready to begin production of renewable diesel from soy or other edible oils at commercial scale. Petrobras recently successfully concluded tests on an industrial scale for the production of renewable diesel.
The plant will use electricity from offshore wind turbines to produce renewable hydrogen for buses, trucks and potentially taxis. Hydrogen is widely used in heavy industry in Europe, but it is mainly produced by converting fossil fuels in a process which emits large amounts of greenhouse gases. Avedøre Power Station on Avedøre Holme.
e-CO 2 Met is the first pilot project for TotalEnergies to convert CO 2 with renewable electric energy to methanol. The system’s efficiency of more than 80% for producing green hydrogen from renewable electricity and water vapor is far higher than that of conventional electrolyzers.
Bridgestone Americas has produced a run of demonstration tires made with 75% recycled and renewable materials (38% renewable, 37% recycled content), including synthetic rubber made with recycled plastics and natural rubber harvested from hevea and guayule grown domestically.
With a focus on efficiency of the design of the body and chassis and renewable materials inside and out, the goal of H2X is not only to bring to market clean power technologies but also to make vehicles the most efficient, cost-effective and sustainable right from the outset.
The green hydrogen produced by this new technology can be used for clean transportation or industrial applications or blended with natural gas. Green hydrogen offers the ability to store renewable electricity across months and seasons, an advantage over battery storage. These efforts could help drive down hydrogen production costs.
Neste, the leading provider of renewable diesel and sustainable aviation fuel, and an expert in delivering drop-in renewable chemical solutions, has acquired a minority stake in Sunfire GmbH , a developer of high-temperature electrolysis technology. One of these fields of innovation is Power-to-X.
Japan’s New Energy and Industrial Technology Development Organization (NEDO), Toshiba Energy Systems & Solutions Corporation (Toshiba ESS), Tohoku Electric Power Co., Japan’s New Energy and Industrial Technology Development Organization (NEDO), Toshiba Energy Systems & Solutions Corporation (Toshiba ESS), Tohoku Electric Power Co.,
thyssenkrupp has signed a contract with Illinois-based CF Industries to supply a 20 megawatt alkaline water electrolysis plant to produce green hydrogen at their Donaldsonville, Louisiana, manufacturing complex. CF Industries, the world’s largest producer of ammonia, is pursuing initiatives to support this clean energy future.
Expanding the use of salt caverns for hydrogen energy storage in other regions offers a significant opportunity to create an infrastructure for clean energy resources throughout the US to benefit industries such as power, transportation and manufacturing that are targeting net zero carbon emissions. Texas Brine gas storage cavern wellhead.
Thanks to the expertise of several project partners, HyFlexFuel proved that HTL biocrudes can be successfully upgraded to drop-in fuels in an industrially-relevant environment, achieving hundreds of hours of continuous operations. The decarbonization of the transportation sector will require large volumes of renewable fuels.
The partnership is part of Europe’s strategic industry initiative, the European Battery Alliance, aimed at building an independent, sustainable, and resilient battery industry in Europe. As a result, the carbon footprint of the production process could even be negative. —CEO of EIT InnoEnergy Germany, Christian Müller.
(a) A schematic diagram of the DAE module with a water harvesting unit made of porous medium soaked with the hygroscopic ionic solution. (b) c) Equilibrium water uptakes of hygroscopic solutions at different air R.H. (e) In the meanwhile, water scarcity has been exacerbated by pollution, industrial consumption, and global warming.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content