This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Korea’s Doosan Heavy Industries & Construction has embarked on the development of technology for producing hydrogen using waste plastic and vinyl. The company has signed a business partnership MOU with RevoTech, a company that specializes in the continuous pyrolysis of waste plastic.
Idemitsu Kosan, one of Japan’s leading producers and suppliers of energy, has launched a feasibility study of clean hydrogen production in Japan generated from waste, including municipal waste. The goal is to launch a first hydrogen production facility around 2030 capable of processing 200-300 tons of waste per day.
RWE's FUREC project, which aims to produce circular and green hydrogen from non-recyclable municipal solid waste in Limburg, the Netherlands, received a €108-million grant from the EU’s Innovation Fund. The CO 2 released during the hydrogen production is captured and can be stored or possibly used as a raw material by industry in the future.
The Suppliers Partnership for the Environment (SP) and the Automotive Industry Action Group (AIAG) have published a new guidance document, “ Measuring Recycled Content of Automotive Products.”. Source: “ Measuring Recycled Content of Automotive Products ”. Simplified process flow. —Kellen Mahoney, Program Director, SP.
The Rice lab of chemist James Tour has successfully extracted valuable rare earth elements (REE) from waste at yields high enough to resolve issues for manufacturers while boosting their profits. The activation strategy is feasible for various wastes including coal fly ash, bauxite residue, and electronic waste.
Energy company SGH2 is bringing the world’s biggest green hydrogen production facility to Lancaster, California. In the gasification island’s catalyst-bed chamber, plasma torches generate such high temperatures (3500 ºC - 4000 ºC), that the waste feedstock disintegrates into its molecular compounds, without combustion ash or toxic fly ash.
With this zero-waste car, the team wants to show that waste can be a valuable material with a multitude of applications. Luca, the world’s first Zero-Waste car. During the UBQ conversion process, the unsorted residual waste stream is reduced into its more basic natural components. Photo by Bart van Overbeeke.
Greenergy will invest in Front End Engineering Design (FEED) of a project to produce low-carbon transportation fuels from waste tires. billion tires are discarded each year worldwide, creating significant waste. This project will be the first of its kind to use waste tires as feedstock for low-carbon, low-sulfur fuel production.
Now, researchers have detected a broad range of emerging synthetic antioxidants, called hindered phenol and sulfur antioxidants, in dust from electronic waste (e-waste) recycling workshops, possibly posing risks for the workers inside. An open-access paper on the work is published in ACS’ Environmental Science & Technology Letters.
Metsä Fibre, part of Metsä Group, and Veolia recently signed a long-term partnership agreement on the refining of crude methanol generated in pulp production at the Äänekoski bioproduct mill into commercial biomethanol. The Kraft pulping process transforms wood chips into pulp, from which a broad range of paper products are made.
Washington State University researchers have developed an innovative way to convert waste polyethylene plastic to ingredients for jet fuel and other valuable products, making it easier and more cost-effective to reuse plastics. In the recycling industry, the cost of recycling is key. wt %, respectively.
The cathode pilot line’s first product, a mid-nickel grade of single-crystal cathode material (NMC622), produced using NOVONIX’s patent-pending, all-dry, zero-waste synthesis technology, matches the performance of leading cathode materials from existing suppliers in full-cell testing.
Cemvita defines Gold Hydrogen as the biological production of hydrogen in the subsurface through the consumption of trapped or abandoned resources. The hydrogen production in this trial exceeded our expectations. Green hydrogen production, however, is energy intensive and expensive. billion in 2020. billion by 2028.
A team of scientists from LanzaTech, Northwestern University and the Department of Energy’s Oak Ridge National Laboratory have engineered a microbe to convert molecules of industrialwaste gases, such as carbon dioxide and carbon monoxide, into acetone and isopropanol (IPA). —Jennifer Holmgren, CEO of LanzaTech.
Italy-based integrated energy company Eni is launching the production of alternative sustainable aviation fuel (SAF). Eni is planning on significant increases in its HVO production, and very strong growth in biojet. (“HVO: The raw materials used will be exclusively wasteproducts such as UCO or fats.
A team from the University of Cordoba in Spain and the University of Tehran in Iran has been searching for ways to increase hydrogen production by using microorganisms, specifically microalgae and bacteria. This study is a proof of concept for the synergetic biohydrogen production in alga-bacteria co-cultures. —Fakhimi et al.
The energy system will power and heat Raven SR’s S-Series hydrogen production facility at a sanitary landfill in Richmond, California. At the site, landfill gas (LFG) will be the primary fuel to provide power for the non-combustion process that converts waste to hydrogen. Earlier post.). This project will initially process up to 99.9
Samsung Heavy Industries (SHI) and Seaborg signed a partnership agreement to develop floating nuclear power plants based on Seaborg’s inherently safe Compact Molten Salt Reactor (CMSR). The floating nuclear power plant comes as a turn-key product, ready to be moored at an industrial harbor.
The USDA ARS and BIOF are cooperating to develop production methods which can be used to increase the productivity of land in Florida formerly used for orange production prior to the devastation of the industry by citrus greening. Citrus greening is one of the world’s most serious citrus plant diseases.
Raven SR, a US-based renewable fuels company ( earlier post ), plans to build a waste-to-hydrogen production facility in Aragón, Spain, following the opening of its subsidiary Raven SR Iberia in Zaragoza, announced earlier this month. Raven SR plans to bring the modular project online in 2023.
Topsoe and Steeper Energy , a developer of biomass conversion technologies, signed a global licensing agreement for a complete waste-to-fuel solution. The end-products include Sustainable Aviation Fuel (SAF), marine biofuel, and renewable diesel from waste biomass. Steeper Energy was founded in 2011 and is backed by TOM Capital.
Following initial contracts with European suppliers, the BMW Group has now concluded further 2 -reduced-steel-for-global-production-network">agreements for the supply of CO 2 -reduced steel in the US and China. This manufacturing process has significant potential for CO 2 savings, compared to coal-based steel production in a blast furnace.
A Korean research team has developed a technology that can be used to mass-produce aviation-grade fuels from wood wastes. Large volumes of lignin are generated as waste in the pulping processes that are used to produce paper. The pyrolysis of lignin produces an oil which has little industrial utility due to its high viscosity.
bp ventures has committed $10 million, leading the Series B investment round, in WasteFuel , a California-based biofuels company that will use proven, scalable technologies to convert bio-based municipal and agricultural waste into lower carbon fuels, such as biomethanol. billion metric tons by 2050.
Aemetis, a renewable fuels company focused on negative carbon intensity products ( earlier post ), has signed a 10-year, 450-million-gallon renewable diesel supply agreement with an industry-leading travel stop company, which is expected to generate more than $3 billion in revenue. The industrial site has 710,000 s.f.
Kazuhiro Sayama from the National Institution of Advanced Industrial Science and Technology, and Prof. Gang Liu from the Institute of Metal Research, CAS, has now initiated the establishment of international efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Credit: DICP.
an affiliate of Saudi Basic Industries Corporation (SABIC), and Technip Energies recently signed a Joint Development and Cooperation Agreement to collaborate on the development and realization of a commercial plant which will produce olefins and aromatics from plastic waste. Synova, SABIC Global Technologies B.V., Synova’s process.
Blue World Technologies has started the series production of its methanol fuel cells, marked with the official inauguration of the 8,500 m 2 Blue Aalborg Factory. The fuel cell factory, which initially has an annual production capacity of 250,000 individual fuel cells, is located in an industrial area at the Port of Aalborg in Denmark.
The UK Department for Transport has shortlisted 8 industry-led projects to receive a share of £15 million (US$21 million) in the Green Fuels, Green Skies (GFGS) competition for the development of sustainable aviation fuels (SAF) production plants in the UK. Research indicates that by 2040 the SAF sector could generate between £0.7
Methanol fuel cell developer and manufacturer Blue World Technologies ( earlier post ) is starting limited production—the first step in commercializing its methanol fuel cell technology. Methanol fuel cell production. Now the company is starting a limited methanol fuel cell production.
The National Circular Economy Roadmap found innovation is crucial to realizing Australia’s largest economic gains, which will come from designing new products and materials, including through advanced manufacturing, and in embracing new business models that will create domestic and export markets for waste streams.
Texas A&M University (TAMU) engineering researchers have devised a simple, proliferation-resistant approach for separating out different components of nuclear waste. What is left behind is an assortment of radioactive elements, including unused fuel, that are disposed of as nuclear waste in the United States.
Sinopec’s hydrogen production plant has the advantages of covering a small area, having a short construction time, and having a green, environmentally friendly production process. The storage and transportation cost of methanol is also much lower than hydrogen, making methanol-to-hydrogen an attractive hydrogen production technology.
Since forming in 2013, Argent Materials, a San Francisco Bay Area recycler of concrete and asphalt, and supplier of aggregate such as crushed rock, entry, cutback, sand, backfill and base rock for construction projects, has diverted more than a billion pounds of waste from local landfills. —Bill Crotinger.
Desktop Metal, a provider of mass-production additive-manufacturing (AM) solutions, has qualified the use of 4140 low-alloy steel for the Production System platform, which leverages patent-pending Single Pass Jetting (SPJ) technology designed to achieve the fastest build speeds in the metal additive manufacturing industry.
a provider of on-site hydrogen production, received an equity investment of up to $157 million from Newlight Partners LP, a growth equity investor, with participation from existing investors Cottonwood Technology Funds, Sun Mountain Capital and new investor Fortistar. BayoTech, Inc.,
HARARE stands for “Hydrogen As the Reducing Agent in the REcovery of metals and minerals from metallurgical waste”. In both the slag from flash smelting of copper and the bauxite residue from alumina production in the Bayer process, the main component is iron oxide. Dumping is minimised and in ideal situations is eliminated entirely.
This order is to begin full production deliveries in 2023 with on-road testing likely to begin in early 2022. The refuse trucks are anticipated to carry up to an industry-leading 720 kWh of energy storage. The refuse market is one of the most stable markets in the industry and provides long-term shareholder value.
thyssenkrupp’s proprietary water electrolysis technology for the production of. It was shown that thyssenkrupp’s electrolyzers can increase and decrease their production at the speed required to participate in the premium primary reserve market. In the following year the production of ammonia succeeded. thyssenkrupp and E.ON
potential customers for its proposed clean hydrogen production facility in Teesside in north-east ?England. development of the Teesside hydrogen cluster and decarbonization of industrial users in the area. products, to scope the supply of clean hydrogen as fuel to reduce hard to abate combustion ?emissions new MoUs are with:?.
has created a wholly-owned subsidiary, NetZero Metals, to begin the research and development of a processing facility that would be located in the Timmins, Ontario region with the goal of utilizing existing technologies to produce zero-carbon nickel, cobalt and iron products. Canada Nickel Company Inc.
Korea’s Ulsan National Institute of Science and Technology (UNIST) have developed a novel process for the production of hydrogen using various types of biomass, including lignin, as an efficient alternative to water oxidation as an electron source. Schematic diagram of byproduct production and hydrogen evolution through lignin decomposition.
Under the terms of the agreement, XL Fleet and Curbtender will jointly develop a series of battery electric (BEV) and plug-in hybrid electric (PHEV) commercial trucks for use in waste management applications. The Quantum is the US WasteIndustry’s #1 selling small rear loader. Curbtender Quantum.
The 70% sustainable-material tire includes 13 featured ingredients across nine different tire components, including: Carbon black is included in tires for compound reinforcement and to help increase their life and has traditionally been made by burning various types of petroleum products.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content