This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
C-Job Naval Architects has designed a new class of liquid hydrogen tanker in partnership with LH2 Europe. LH2 Europe will use the abundant renewable electricity in Scotland to produce green hydrogen and market it at a competitive price with diesel. Hydrogen will be essential to the future of energy. Vessel specifications.
Methanol–water reforming could prove to be a promising solution for hydrogen production/transportation in stationary and mobile hydrogen applications. MoC catalyst which exhibits extraordinary hydrogen production activity in the aqueous-phase methanol reforming reaction. Under optimized conditions, Ni/?-MoC
A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage. Diess et al.
Norwegian wholesaler Asko is among the first to operate a goods vehicle that runs on hydrogen, thanks to a collaborative effort by research scientists and industry. The on-board charger is 22 kW AC with CCS charging interface, and hydrogen storage is 33 kg @350 bar. The aim here is not to use hydrogen for all goods transport.
Scottish Enterprise, Transport Scotland and the Hydrogen Accelerator, based at the University of St Andrews, have appointed Arcola Energy and a consortium of industry leaders in hydrogen fuel cell integration, rail engineering and functional safety to deliver Scotland’s first hydrogen powered train.
Canada-based Aurora Hydrogen, a company developing emission-free hydrogen production technology, has raised $10 million in Series A funding led by Energy Innovation Capital. As the world looks to quickly decarbonize transportation and industry, hydrogen demand is expected to increase rapidly, from $130 billion today to $2.5
China Petroleum & Chemical Corporation (Sinopec) officially launched China’s first methanol-to-hydrogen and hydrogen refueling service station in Dalian, China. The storage and transportation cost of methanol is also much lower than hydrogen, making methanol-to-hydrogen an attractive hydrogen production technology.
Researchers from the Chinese Academy of Sciences and Tsinghua University have used a gallium, indium, tin and bismuth alloy to generate hydrogen, when placed in contact with an aluminum plate immersed in water. The hydrogen is then used in a PEM fuel cell. In the 1960s, Woodall et al. In 2015, Zhang et al.
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. —Song et al. Song et al.
MAN Truck & Bus outlined its roadmap for the development of CO 2 -free mobility solutions for longer-distance transport. For public transport and distribution applications, the decision seems to have been made: battery electric vehicles are the means of choice. The aim is to test the entire hydrogen ecosystem in transport logistics.
The EU-funded HyMethShip project developed a system that innovatively combined a membrane reactor, a CO 2 capture system, a storage system for CO 2 and methanol as well as a hydrogen-fueled combustion engine to power ships. The bottom part shows how hydrogen for the engine is obtained from methanol in the reactor (blue arrow).
Specifically, to expand options for producing, transporting, and using fuel, the five companies intend to unite and pursue the three initiatives of: Participating in races using carbon-neutral fuels; Exploring the use of hydrogen engines in two-wheeled and other vehicles; and. Continuing to race using hydrogen engines.
ENEOS Corporation has constructed a demonstration plant in Brisbane, Australia, to produce methylcyclohexane (MCH), a liquid organic hydrogen carrier (LOHC), using its proprietary low-cost electrochemical synthesis of organic hydride method Direct MCH. MCH contains more than 500 times more hydrogen per unit volume than hydrogen gas.
Purem by Eberspaecher is introducing efficient exhaust technology for hydrogen engines. The H 2 -ICE exhaust system for hydrogen engines from Purem by Eberspaecher. Hydrogen engines have potential as a drive type with CO 2 -neutral fuel, especially for heavy-load transport and in off-highway vehicles.
SoCalGas) and H2U Technologies are testing a new electrolyzer, called the Gramme 50, for the production of green hydrogen. The green hydrogen produced by this new technology can be used for clean transportation or industrial applications or blended with natural gas. Southern California Gas Co.
Alstom will supply six hydrogen fuel cell trains, with the option for eight more, to FNM (Ferrovie Nord Milano), the main transport and mobility group in the Italian region of Lombardy, for a total amount of approximately €160 million. The hydrogen version will match the operational performance of diesel trains, including their range.
With efficiencies above 90%, Topsoe’s proprietary SOEC electrolyzers offer superior performance in electrolysis of water into hydrogen—e.g., SOECs can be used for direct electrochemical conversion of steam (H 2 O), carbon dioxide (CO 2 ), or both into hydrogen (H 2 ), carbon monoxide (CO), or syngas (H 2 +CO), respectively.
and Iwatani Corporation announced that Fukushima Hydrogen Energy Research Field (FH2R), which had been under construction in Namie town, Fukushima Prefecture since 2018, has been constructed with a solar-energy-powered 10MW-class hydrogen production unit, the largest in the world, at the end of February.
Alstom and MOL, Hungary’s leading oil and gas company, have signed a Memorandum of Understanding to structure cooperation in examining the use of hydrogen technology in rail transportation. MOL Group already produces and utilizes almost 150,000 tonnes of hydrogen per year.
million) ammonia cracker prototype designed to produce green hydrogen at industrial scale. The prototype will use ammonia to deliver 200kg of hydrogen a day—enough to power around 5-10 hydrogen fuel cell-electric buses. Ammonia has a high hydrogen density and is readily transportable in bulk. million (US$4.24
s public transport operator MPK Pozna? has purchased 25 hydrogen-fueled buses from Solaris Bus & Coach. The hydrogen units will join the fleet of MPK in the second half of 2023. This is the largest order so far for Solaris hydrogen Urbino hydrogen buses.
A study led by Norwegian climate center CICERO has found that the global warming effect of leaked hydrogen is almost 12 times stronger than that of CO 2. Unlike exhaust from burning coal and gas that contains CO 2 , burning hydrogen emits only water vapor and oxygen. Hydrogen interacts with various biogeochemical processes.
A development team from CoorsTek Membrane Sciences, in collaboration with international research partners, have successfully used ceramic membrane technology to develop a scalable hydrogen generator that makes hydrogen from electricity and fuels including natural gas, biogas and ammonia with near zero energy loss.
Researchers at the Fraunhofer IFF in Germany are designing the distributed and modular production and distribution of green hydrogen for industry, business and transportation throughout the value chain—a hydrogen factory of the future. The hydrogen factory of the future. The outcome is always green hydrogen.
Siemens Energy and Siemens Mobility have signed a Memorandum of Understanding (MoU) jointly to develop and offer hydrogen systems for trains. This can be achieved—completely CO 2 -free—with the electrolysis of water using. The decarbonization of energy systems is a central goal of Siemens Energy.
With clean hydrogen gaining recognition worldwide as a carbon-free fuel capable of making a significant contribution to addressing climate change, Southern California Gas Co. SoCalGas) will field test a new technology that can simultaneously separate and compress hydrogen from a blend of hydrogen and natural gas. Rhandi et al.
Element 1 Corporation (e1NA), Zhejiang Methanol Hydrogen Technology (ZMHT) and Zhejiang Element 1 (e1China) have formed a joint venture company—Zhejiang Hydrogen One Energy Technology Co., — to drive methanol-based hydrogen generation technology and commercialize e1NA’s technology throughout Greater China.
Photoelectrochemical (PEC) water splitting based on solar energy is one promising approach for the production of green hydrogen. However, its widespread application is limited by a lack of efficient photoanodes for catalyzing the rate-limiting oxygen evolution reaction (OER), an important reaction in PEC water splitting.
Reintroducing airships into the world’s transportation mix could contribute to lowering the transport sector’s carbon emissions and can play a role in establishing a sustainable hydrogen based economy, according to a new IIASA-led study. Hydrogen is a good energy carrier and a valuable energy storage alternative.
Ricardo has developed a hydrogen-fueled research engine which could offer a renewable, economic and durable technology solution to accelerate zero-carbon emissions in heavy duty trucks, off-highway machines and marine vessels. —Adrian Greaney, Director of Technology and Digital at Ricardo Automotive and Industrial EMEA Division.
Extended road testing of the vehicle is underway in Asia and represents a significant step towards the commercialization of e1’s onboard hydrogen generation technology. The company stated that it is becoming increasingly engaged with partners around the world on a wide range of hydrogen energy projects.
The design proved successful in generating hydrogen gas without producing large amounts of harmful byproducts. Generation of H 2 and O 2 from untreated water sources represents a promising alternative to ultrapure water required in contemporary proton exchange membrane-based electrolysis.
In an open access paper published in Nature Communications , researchers from the University of Wollongong in Australia report that their capillary-fed electrolysis cell demonstrates water electrolysis performance exceeding commercial electrolysis cells, with a cell voltage at 0.5 kWh/kg hydrogen (vs. 2 and 85 °C of only 1.51
Researchers at the University of Melbourne (Australia) have demonstrated a method of direct hydrogen production from air— in situ capture of freshwater from the atmosphere using hygroscopic electrolyte and subsequent electrolysis powered by solar or wind with a current density up to 574 mA cm ?2.
Researchers at Germany’s Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden have developed an ultra-high-capacity hydrogen storage substance for PEM fuel cell applications based on solid magnesium hydride. Fraunhofer’s POWERPASTE releases hydrogen on contact with water. 1 kg hydrogen).
Australian startup H2X has launched with the mission of producing a range of hydrogen-powered hybrid vehicles targeting different applications and markets. The hybrid concept mixes hydrogen fuel cell, battery, and supercapacitors according to what is best suited to each application.
A 27-tonne hydrogen fuel cell rigid truck built by VDL started its first demonstration with BREYTNER as part of the EU-funded H2-Share project in Schelluinen, the Netherlands. Wystrach GmbH built a low-energy mobile hydrogen refueler to accompany the truck on its demonstration sites. This hydrogen truck is unique in the Benelux.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner. Qian Wang et al.
Australia-based Global Energy Ventures (GEV) and Pacific Hydro Australia Developments Pty Ltd (Pacific Hydro) have executed a Memorandum of Understanding (MOU) to explore opportunities regarding the production, storage, loading, ground and marine transportation of green hydrogen produced by Pacific Hydro’s Ord Hydrogen Project.
Italy-based Snam, a global energy infrastructure company, and RINA, a global testing, inspection, certification and engineering consultancy services firm, have signed a Memorandum of Understanding to collaborate in the hydrogen sector, in order to realize the significant potential of hydrogen as a fundamental energy carrier.
Researchers from the US Department of Energy’s (DOE) Argonne National Laboratory have combined two membrane-bound protein complexes to perform a complete conversion of water molecules to hydrogen and oxygen. This part of the reaction, however, represents only half of the overall process needed for hydrogen generation.
Starfire Energy, a Colorado-based developer of modular chemical plants for the carbon-free production of ammonia and hydrogen, has closed a major funding round. Ammonia offers an energy density comparable to fossil fuels and significantly higher than Li-ion batteries and compressed or liquid hydrogen.
bp is developing plans for the UK’s largest blue hydrogen production facility, targeting 1GW of hydrogen production by 2030. bp’s hydrogen business and make a major contribution to the UK Government’s target of developing 5GW of hydrogen production by 2030.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content