This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Deutsche Aircraft, the new purpose-driven German aircraft Original Equipment Manufacturer (OEM) ( earlier post ), and UniversalHydrogen Co. earlier post ) announced a technical collaboration to complete a design study to incorporate UniversalHydrogen’s modular capsule technology into the Dornier 328 program.
The Scottish Hydrogen Fuel Cell Freight Trial (SHyFT), led by Arcola Energy, has secured funding from the Department for Transport’s Zero Emission Road Freight program for the design of a trial of hydrogen fuel cell trucks, supported by a green hydrogen refueling infrastructure in Scotland.
“Blue” hydrogen—produced through steam methane reforming (SMR) of natural gas or coal gasification, but with CO 2 capture and storage—is being described as having low or zero carbon emissions. Even if true though, the use of blue hydrogen appears difficult to justify on climate grounds. 2021) “How green is blue hydrogen?”
Siemens Energy, Duke Energy and Clemson University have teamed up to study the use of hydrogen for energy storage and as a low- or no-carbon fuel source to produce energy at Duke Energy’s combined heat and power plant located at Clemson University in South Carolina.
Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. The open-access paper on the study is published in the RSC journal Energy & Environmental Science.
Researchers at The Ohio State University have used a chemical looping process to produce hydrogen from hydrogen sulfide gas—commonly called “sewer gas”. Hydrogen sulfide is emitted from manure piles and sewer pipes and is a key byproduct of industrial activities including refining oil and gas, producing paper and mining.
in close collaboration with GTI and The University of Texas at Austin, has launched a US Department of Energy project, Demonstration and Framework for H2@Scale in Texas and Beyond. The project is supported by DOE’s Hydrogen and Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy.
Independent research and business intelligence company Rystad Energy estimates that there are about 91 planned hydrogen pipeline projects in the world, totaling 30,300 kilometers and due to come online by around 2035. New hydrogen infrastructure is starting to materialize as the world seeks to accelerate its path to net zero.
Researchers from the Chinese Academy of Sciences and Tsinghua University have used a gallium, indium, tin and bismuth alloy to generate hydrogen, when placed in contact with an aluminum plate immersed in water. The hydrogen is then used in a PEM fuel cell. Credit: Jing Liu. In 2015, Zhang et al.
A team at Beijing University of Technology has evaluated four load control strategies—throttle, ammonia-hydrogen ratio, air–fuel ratio, and variable valve timing—for an ammonia-hydrogen dual fuel Miller cycle spark ignition engine in a hybrid system. A paper on their work appears in the journal Fuel. 2023.128396
California legislators have allocated UC San Diego $35 million to design and build a new coastal research vessel with a first-of-its-kind hydrogen-hybrid propulsion system. The study was funded by the US Department of Transportation’s Maritime Administration. Earlier post.)
Researchers from Japan’s NIMS (National Institute for Materials Science), the University of Tokyo and Hiroshima University have jointly conducted a techno-economic analysis for hydrogen production from photovoltaic power generation (PV) utilizing a battery-assisted electrolyzer. This approximately converts to US$1.92 to US$3.00/kg
Conventional water electrolysis for the production of hydrogen faces technological challenges to improve the efficiency of the water-splitting reaction for the sluggish oxygen evolution reaction (OER). Oxygen and hydrogen are generated during a water electrolysis reaction (top right). Credit IBS.
Researchers at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University with collaborators at the University of Oregon and Manchester Metropolitan University have developed a seawater-resilient bipolar membrane electrolyzer.
million in federal funding for cost-shared research and development projects under the funding opportunity announcement (FOA) FE-FOA 0002397 , University Turbines Systems Research (UTSR) — Focus on Hydrogen Fuels. There is renewed interest in the use of hydrogen, a clean-burning fuel, for turbine-based electricity generation.
Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Hydrogen has gained attention as one of the possible next generation energy sources. under 600nm).
A team from Nanjing University, Hubei Normal University and Zhejiang University has developed a cobalt-doped graphdiyne catalyst for catalytically decomposing ammonia (NH 3 ) to generate H 2. Ammonia is by its nature a high-density hydrogen carrier. —Liu et al. —Liu et al.
Researchers at the University of Ontario Institute of Technology are developing a new method to dissociate water vapor into hydrogen gas by microwave-generated plasma (plasmolysis). A) An experimental setup for full microwave hydrogen production and (b) Schematic of the plasma reactor placed inside the microwave. (A)
A team from Hamad Bin Khalifa University in Qatar has comprehensively reviewed various ammonia decomposition techniques to produce clean hydrogen by recovering the boil-off ammonia while integrating solar energy infrastructures onboard a ship for electricity and heat requirements. The review paper is published in the journal Fuel.
UniversalHydrogen Co. ACIA expects to place 10 firm orders for UniversalHydrogen’s ATR 72 conversion kits with additional purchase rights for 20 more conversion kits of various turboprop types. The conversion consists of a fuel cell electric powertrain that replaces the existing turboprop engines.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. The microstructured optical fiber canes (MOFCs) with photocatalyst generate hydrogen that could power a wide range of sustainable applications. 9b01577.
Pacific Gas and Electric Company (PG&E) is launching the US’ most comprehensive end-to-end hydrogenstudy and demonstration facility, which will examine the future potential of the zero-carbon fuel hydrogen as a renewable energy source for not only PG&E customers but the entire global natural gas industry.
A team from the University of Cordoba in Spain and the University of Tehran in Iran has been searching for ways to increase hydrogen production by using microorganisms, specifically microalgae and bacteria. This study is a proof of concept for the synergetic biohydrogen production in alga-bacteria co-cultures.
million) to five demonstration phase projects for low-carbon hydrogen production. The hydrogen projects receiving funding are: Dolphyn. The project concerns the production of hydrogen at scale from offshore floating wind in deep water locations. HyNet – low carbon hydrogen plant. Acorn Hydrogen Project.
Italy-based Snam, a global energy infrastructure company, and RINA, a global testing, inspection, certification and engineering consultancy services firm, have signed a Memorandum of Understanding to collaborate in the hydrogen sector, in order to realize the significant potential of hydrogen as a fundamental energy carrier.
Scientists from Kyushu University and Kumamoto University in Japan have developed a new catalyst capable of assisting three key reactions for using hydrogen in energy and industry. A hydrogen energy economy will require not only catalysts capable of H 2 oxidation but also those that can put it back together again.
Several organizations, encompassing companies, research labs, and academia, have formed the Hydrogen Opposed Piston Engine Working Group. The Working Group consists of members undertaking research and development in the field of hydrogen combustion in an opposed-piston engine. If hydrogen combustion is sufficiently lean—i.e.,
When compared to a similarly structured catalyst made from iron—another promising, well-studied platinum substitute—the team found that the cobalt catalyst achieved a similar reaction but with four times the durability. Previous studies had shown that cobalt is far less active than iron-based catalysts. —Xie et al.
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. Image credit: Roksana Rashid, McGill University.
thyssenkrupp will build a €2B hydrogen-powered direct reduction plant at its Duisberg site. As part of its tkH2Steel transformation project, coal-based blast furnaces will be replaced by hydrogen-powered direct reduction plants. The plant, with a capacity of 2.5 million metric tons, will avoid the emission of 3.5 Capacity will be 2.5
Researchers at Argonne National Laboratory, with colleagues from Lawrence Berkeley, Oak Ridge, and National Renewable Energy labs, and the University of Tennessee, have published a comprehensive analysis of the total cost of ownership (TCO) for 12 sizes of vehicles ranging from compact sedans up to Class 8 tractors with sleeper cabs.
Hydro-Québec’s Center of Excellence in Transportation Electrification and Energy Storage (CETEES) and the University of South Wales (USW) have signed commercial agreements to transfer patented hydrogen storage technology arising from USW research to Hydro-Québec to enable its commercialization. — Morris et al.
Phil Ansell, an aerospace engineer at the University of Illinois Urbana-Champaign, modeled the life cycle carbon dioxide equivalent emissions of liquid hydrogen production required to meet the fuel needs of Chicago’s O’Hare International Airport (ORD) with today’s electric grid mix. Or is it better to liquefy it on site at the airport?
UniversalHydrogen ( earlier post ) has formed a collaboration with three Japan-based companies to study—and ultimately to develop—a green hydrogen supply and logistics solution that will enable Japanese airlines to scale their utilization of hydrogen-powered aircraft in the very near-term.
High-density polyethylene (HDPE) grocery bags can be successfully pyrolyzed to alternative diesel fuel, according to a new study by a team from the Illinois Sustainable Technology Center (ISTC) at the University of Illinois, Urbana-Champaign and the United States Department of Agriculture (USDA) Agricultural Research Service ARS.
In a study published in Nature Energy , researchers led by Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) describe how nanodiamond-reinforced composite membranes can purify hydrogen from its humid mixtures, making the hydrogen generation processes more efficient and cost-effective.
Researchers at the University of Arkansas, with colleagues from Brookhaven National Lab and Argonne National Lab, have found that nanoparticles composed of nickel and iron are more effective and efficient than other more costly materials when used as catalysts in the production of hydrogen fuel through water electrolysis.
Researchers at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have shown for the first time that a low-cost, non-precious metal cobalt phosphide (CoP) catalyst catalyst can split water and generate hydrogen gas for hours on end in the harsh environment of a commercial device.
ClearFlame Engine Technologies, a startup developing net-zero engine technology ( earlier post ), announced the publication of an independent study that finds ClearFlame’s technology could help fleet owners and other heavy-duty truck operators lower total costs while meeting sustainability goals sooner than currently available alternatives.
The accelerator’s higher power provides more neutrons for researchers who use the facility to study and improve a wide range of materials for more efficient solar panels, longer lasting batteries and stronger, lighter materials for transportation. megawatts, which improves on the facility’s original design capability.
These findings largely span the application territory of NMAs for fuel cells, green hydrogen production and many more. New-type noble metal aerogels were developed for outstanding pH-universal electrocatalysis toward hydrogen evolution reaction and oxygen reduction reaction. Universal HER and ORR Electrocatalysis.”
To increase the share of hydrogen in the final energy demand to enlarge the low-carbon energy sources share in the global energy mix and promote the environmental sustainability. The goal is to create a unique concept that can be standardized and implemented worldwide, allowing for large-scale hydrogen production.
Researchers at the University of Bristol in the UK and Harbin Institute of Technology in China have built tiny droplet-based algal factories that produce hydrogen, instead of oxygen, when exposed to daylight in air. Electron microscopy image of a densely packed droplet of hydrogen-producing algal cells.
Researchers at Pacific Northwest National Laboratory (PNNL), with colleagues from Oregon State University, have developed PNNL a durable, inexpensive molybdenum-phosphide catalyst that efficiently converts wastewater and seawater into hydrogen. Details of the team’s study appear in the journal ACS Catalysis.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content