This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
EPFL researchers have built a pilot-scale solar reactor that produces usable heat and oxygen, in addition to generating hydrogen with unprecedented efficiency for its size. This is the first system-level demonstration of solarhydrogen generation. Holmes-Gentle et al.
Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. of hydrogen is currently produced via water electrolysis and only a fraction of this production is powered by renewable energy.
Perovskite materials may hold the potential to play an important role in a process to produce hydrogen in a renewable manner, according to an analysis from scientists at the National Renewable Energy Laboratory (NREL). Electrolysis needs electricity to split water into hydrogen and oxygen. Illustration by Patrick Davenport, NREL.
Researchers from Japan’s NIMS (National Institute for Materials Science), the University of Tokyo and Hiroshima University have jointly conducted a techno-economic analysis for hydrogen production from photovoltaic power generation (PV) utilizing a battery-assisted electrolyzer. This approximately converts to US$1.92 to US$3.00/kg
Heliogen and Bloom Energy have successfully demonstrated the production of green hydrogen by integrating the companies’ technologies: Heliogen’s concentrated solar energy system and the Bloom Electrolyzer. Electricity accounts for nearly 80% of the cost of hydrogen from electrolysis. Source: Heliogen.
the developer of a technology to produce renewable hydrogen using sunlight and water ( earlier post ), is working with Suzhou GH New Energy Co. a division of GCL Poly, in China to make the final modifications to the solar cells required to manufacture the Gen 1 hydrogen production panels to be used in demonstration pilot plants.
Norwegian wholesaler Asko is among the first to operate a goods vehicle that runs on hydrogen, thanks to a collaborative effort by research scientists and industry. The on-board charger is 22 kW AC with CCS charging interface, and hydrogen storage is 33 kg @350 bar. The aim here is not to use hydrogen for all goods transport.
Both companies worked together to develop hydrogen products around the Toyota modular fuel cell system. EODev’s REXH2 maritime range extender is a hydrogen power solution that can be integrated into different kinds of ships, in full compliance with environmental and regulatory constraints.
Africa can produce 50 million tons of green hydrogen a year by 2035, according to a new study by the European Investment Bank (EIB), International Solar Alliance and the African Union, with the support of the Government of Mauritania, HyDeal and UCLG Africa. This is equivalent to energy costs of US$60 a barrel.
The technology group Wärtsilä is developing the combustion process in its gas engines to enable them to burn 100% hydrogen fuel. Wärtsilä has researched hydrogen as a fuel for 20 years, and has tested its engines with blends of up to 60% hydrogen and 40% natural gas.
Toshiba Energy Systems & Solutions Corporation (Toshiba ESS) announced that its hydrogen-based autonomous energy supply system H2One, which Toshiba ESS delivered and installed on the rooftop of Toranomon Hills Business Tower (Minato-ku, Tokyo), has started full-scale operation with the opening of commercial facilities.
and Iwatani Corporation announced that Fukushima Hydrogen Energy Research Field (FH2R), which had been under construction in Namie town, Fukushima Prefecture since 2018, has been constructed with a solar-energy-powered 10MW-class hydrogen production unit, the largest in the world, at the end of February.
A coalition of major oil & gas, power, automotive, fuel cell, and hydrogen companies have developed and released the full new report, a “ Road Map to a US Hydrogen Economy. ” Road Map to a US Hydrogen Economy ”. —Fuel Cell and Hydrogen Energy Association (FCHEA) President Morry Markowitz. million jobs by 2050.
Bioscience engineers at KU Leuven have created a solar panel that produces hydrogen gas from moisture in the air. Twenty of these solar panels could provide electricity and heat for one family for an entire winter. A traditional solar panel converts between 18 to 20% of the solar energy into electricity.
AW-Energy Oy is entering the commercial hydrogen market by introducing a combined WaveRoller and HydrogenHub process for the production of green hydrogen. In AW-Energy’s concept, wave energy complements solar power production to enable large-scale green hydrogen. —Christopher Ridgewell, CEO of AW-Energy Oy.
ENEOS Corporation has constructed a demonstration plant in Brisbane, Australia, to produce methylcyclohexane (MCH), a liquid organic hydrogen carrier (LOHC), using its proprietary low-cost electrochemical synthesis of organic hydride method Direct MCH. MCH contains more than 500 times more hydrogen per unit volume than hydrogen gas.
Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Hydrogen has gained attention as one of the possible next generation energy sources. under 600nm).
The project is supported by DOE’s Hydrogen and Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy. The project partners will generate zero-carbon hydrogen onsite via electrolysis with solar and wind power and reformation of renewable natural gas from a Texas landfill.
Toyota has commissioned Victoria’s first commercial-grade permanent hydrogen production, storage and refuelling facility at its former manufacturing site at Altona in Melbourne’s west. Power for the electrolyzer is drawn from a combination of an 87kW solar array, a 100kW battery storage and the grid, depending on what’s available at the time.
Toyota Motor and its subsidiary, Woven Planet Holdings have developed a working prototype of its portable hydrogen cartridge. This cartridge design will facilitate the everyday transport and supply of hydrogen energy to power a broad range of daily life applications in and outside of the home. Portable Hydrogen Cartridge (Prototype).
Hydrogen produced with renewable electricity could compete on costs with fossil fuel alternatives by 2030, according to a new report from the International Renewable Energy Agency (IRENA). A combination of falling costs for solar and wind power, improved performance as well as economies of scale for electrolyzers could make it possible.
This award marks the first Advanced Class Gas Turbines in the industry specifically designed and purchased as part of a comprehensive plan to sequentially transition from coal, to natural gas and finally to renewable hydrogen fuel, and creates a roadmap for the global industry to follow. MHPS gas turbines have more than 3.5
Cemvita Factory announced multiple developments with its Gold Hydrogen business. Cemvita defines Gold Hydrogen as the biological production of hydrogen in the subsurface through the consumption of trapped or abandoned resources. The hydrogen production in this trial exceeded our expectations. billion in 2020.
Researchers at the Fraunhofer-Gesellschaft have developed a membrane technology for the energy-efficient and economic separation of hydrogen from natural gas. This marks a major step forward in the transportation and distribution of hydrogen as an energy source. This gives us hydrogen with an 80 percent degree of purity.
Utilization of renewable solar energy is crucial for addressing the global energy and environmental concerns and achieving sustainable development. In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals. Credit: DICP.
The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. The company’s key development allows for reduced photocatalyst use and integration with existing concentrated solar systems. The facility is home to Australia’s largest solar thermal research hub.
The Dutch Institute for Fundamental Energy Research ( DIFFER ) is partnering with Toyota Motor Europe (TME) to develop a device that absorbs water vapor, and splits it into hydrogen and oxygen directly using solar energy. In this project, DIFFER and TME are exploring an innovative way to produce hydrogen directly out of humid air.
A team from Hamad Bin Khalifa University in Qatar has comprehensively reviewed various ammonia decomposition techniques to produce clean hydrogen by recovering the boil-off ammonia while integrating solar energy infrastructures onboard a ship for electricity and heat requirements. The review paper is published in the journal Fuel.
Total and Engie signed a cooperation agreement to design, develop, build and operate the Masshylia project, France’s largest renewable hydrogen production site at Châteauneuf-les-Martigues in the Provence-Alpes-Côte d’Azur South region. Enhanced industrial safety thanks to the use of 3D digital models for each component of the installation.
Iberdrola Australia and Australia-based hydrogen developer ABEL Energy will build a green hydrogen and green methanol production plant at Bell Bay in northern Tasmania (Australia). Green hydrogen from the plant will be available for domestic customers.
TECO 2030 ( earlier post ) is aiming to establish Norway’s first large-scale production of fuel cells, optimized to be the heart of hydrogen-powered ships and other heavy-duty installations. This will be the first volume production of fuel cells in Norway and a hub for the Norwegian hydrogen industry. gigawatt, per year.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. The microstructured optical fiber canes (MOFCs) with photocatalyst generate hydrogen that could power a wide range of sustainable applications. Potter, Daniel J.
We are the first to demonstrate the entire thermochemical process chain from water and CO 2 to kerosene in a fully-integrated solar tower system. Previous attempts to produce aviation fuels through the use of solar energy have mostly been performed in the laboratory. B) Photograph of the solar tower fuel plant during operation.
Italy-based Snam, a global energy infrastructure company, and RINA, a global testing, inspection, certification and engineering consultancy services firm, have signed a Memorandum of Understanding to collaborate in the hydrogen sector, in order to realize the significant potential of hydrogen as a fundamental energy carrier.
The European Union adopted strategies for energy system integration and hydrogen, paving the way “towards a more efficient and interconnected energy sector, driven by the twin goals of a cleaner planet and a stronger economy.”. Hydrogen strategy. This connected and flexible system will be more efficient, and reduce costs for society.
ENGIE has taken the Final Investment Decision in the development of one of the world’s first industrial-scale renewable hydrogen projects, to be located in the Pilbara region of Western Australia. Yuri roadmap. As announced in 2021, the Yuri project is being developed with the support of a $47.5-million
Researchers at the University of Melbourne (Australia) have demonstrated a method of direct hydrogen production from air— in situ capture of freshwater from the atmosphere using hygroscopic electrolyte and subsequent electrolysis powered by solar or wind with a current density up to 574 mA cm ?2. —Guo et al. Zavabeti, A.
The SOLETAIR project ( earlier post ) has produced its first 200 liters of synthetic fuel from solar energy and the air’s carbon dioxide via Fischer-Tropsch synthesis. The mobile chemical pilot plant produces gasoline, diesel, and kerosene from regenerative hydrogen and carbon dioxide. The SOLETAIR project started in 2016.
Solid-oxide-fuel-cell manufacturer Bloom Energy is entering the commercial hydrogen market by introducing hydrogen-powered fuel cells and electrolyzers that produce renewable hydrogen. Bloom’s technologies can be critical in enabling South Korea to execute on its government-mandated Hydrogen Economy Roadmap.
Anglo American plc unveiled a prototype of the world’s largest hydrogen-powered mine haul truck designed to operate in everyday mining conditions at its Mogalakwena PGMs (platinum group metals) mine in South Africa. The hydrogen economy provides an opportunity to create new engines of economic activity. South Africa’s Hydrogen Valley.
Kandjoze of Namibia’s National Planning Commission agreed to establish a hydrogen partnership between Germany and Namibia and signed a Joint Communiqué of Intent (JCoI). The global race for the best hydrogen technologies and the best sites for hydrogen production is already on. It has a lot of vast unused space.
Hyundai Motor Group opened Hyundai Hydrogen World—an exhibition hall dedicated to the fuel-cell electric vehicle, related technologies and energy—at the center of the Century Square in Shanghai. The zone with an open FCEV shows its internal structure, parts and mechanism, including the hydrogen tank and fuel-cell system.
Starfire Energy, a Colorado-based developer of modular chemical plants for the carbon-free production of ammonia and hydrogen, has closed a major funding round. Ammonia offers an energy density comparable to fossil fuels and significantly higher than Li-ion batteries and compressed or liquid hydrogen.
The first Energy Earthshot, launched 7 June—Hydrogen Shot—seeks to reduce the cost of clean hydrogen by 80% to $1 per 1 kilogram in 1 decade (“1-1-1”). Achieving the Hydrogen Shot’s $1/kg cost goal will enable new markets for hydrogen, including energy storage, steel manufacturing, clean ammonia, and heavy-duty trucks.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content