Remove Hydrogen Remove Polymer Remove Water
article thumbnail

Uppsala team develops composite polymer dots for efficient, stable H2 production from water and sunlight

Green Car Congress

Researchers at Uppsala University have developed photocatalytic composite polymer nanoparticles (“polymer dots”) that show promising performance and stability for the production of hydrogen from water and sunlight. These polymer dots are designed to be both environmentally friendly and cost-effective. 0c12654.

Polymer 397
article thumbnail

MIT engineers create 2D polymer that self-assembles into sheets

Green Car Congress

Using a novel polymerization process, MIT chemical engineers have created a new two-dimensional polymer that self-assembles into sheets, unlike all other polymers which form one-dimensional chains. Until now, scientists had believed it was impossible to induce polymers to form 2D sheets. Auto-catalytic self-templating of 2DPA-1.

Polymer 435
article thumbnail

Researchers show coordination polymer glass membranes can produce as much energy as liquid-based counterparts in fuel cells

Green Car Congress

Scientists at Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) have developed a new coordination polymer glass membrane for hydrogen fuel cells that works just as well as its liquid counterparts with added strength and flexibility. The newly developed glass polymer membrane. —Ogawa et al.

Polymer 332
article thumbnail

Shell Gamechanger Accelerator Powered by NREL selects two green hydrogen startups for fourth cohort

Green Car Congress

.) – Developing ion-exchange membranes (IEM) and polymers used for electrochemical applications in order to reduce the use of cost-prohibitive and toxic materials. Applications include green hydrogen production, hydrogen fuel cells and carbon capture and utilization (CCU).

Hydrogen 418
article thumbnail

Israeli team develops decoupled PEC water-splitting system for centralized production of H2

Green Car Congress

Researchers in Israel have designed a separate-cell photoelectrochemical (PEC) water-splitting system with decoupled hydrogen and oxygen cells for centralized hydrogen production. It addresses the challenges of designing, building, and optimizing the device for assessing large-scale hydrogen generation. Landman et al.

Water 355
article thumbnail

New solid polymer electrolyte outperforms Nafion; novel polymer folding

Green Car Congress

Researchers, led by a team from the University of Pennsylvania, have used a polymer-folding mechanism to develop a new and versatile kind of solid polymer electrolyte (SPE) that currently offers proton conductivity faster than Nafion by a factor of 2, the benchmark for fuel cell membranes.

Polymer 250
article thumbnail

U Oregon team advances effectiveness of catalytic water dissociation in bipolar membranes

Green Car Congress

Researchers at the University of Oregon have advanced the effectiveness of the catalytic water dissociation reaction in bipolar membranes. The technology behind bipolar membranes, which are layered ion-exchange polymers sandwiching a water dissociation catalyst layer, emerged in the 1950s. —Oener et al.

Oregon 284