Remove Hydrogen Remove MIT Remove Water
article thumbnail

Researchers from MIT and Sun Catalytix develop an artificial leaf for solar water splitting to produce hydrogen and oxygen

Green Car Congress

Researchers led by MIT professor Daniel Nocera have produced an “artificial leaf”—a solar water-splitting cell producing hydrogen and oxygen that operates in near-neutral pH conditions, both with and without connecting wires. (B) MS signal and SFE values for a wireless configuration. Reece et al.

MIT 278
article thumbnail

MIT engineers create 2D polymer that self-assembles into sheets

Green Car Congress

Using a novel polymerization process, MIT chemical engineers have created a new two-dimensional polymer that self-assembles into sheets, unlike all other polymers which form one-dimensional chains. Dubbs Professor of Chemical Engineering at MIT and the senior author of the new study. Auto-catalytic self-templating of 2DPA-1.

Polymer 435
article thumbnail

MIT research team finds most efficient oxygen evolution reaction catalyst yet; potential for hydrogen production and rechargeable metal-air batteries

Green Car Congress

A team of MIT researchers lead by Prof. John Goodenough from the University of Texas as Austin, has found one of the most effective catalysts yet discovered for the oxygen evolution reaction (OER) for use in water-splitting to produce hydrogen or in rechargeable metal-air batteries. Yang Shao-Horn, in collaboration with Prof.

MIT 326
article thumbnail

MIT Researchers Identify New Low-Cost Water-Splitting Catalyst

Green Car Congress

Daniel Nocera and his associates have found another formulation, based on inexpensive and widely available materials, that can efficiently catalyze the splitting of water molecules using electricity. But in further work, “ we have totally gotten rid of the platinum of the hydrogen side ,” Nocera says. Earlier post.). Earlier post.).

Low Cost 225
article thumbnail

Study finds the wettability of porous electrode surfaces is key to making efficient water-splitting or carbon-capturing systems

Green Car Congress

As water-splitting technologies improve, often using porous electrode materials to provide greater surface areas for electrochemical reactions, their efficiency is often limited by the formation of bubbles that can block or clog the reactive surfaces. As a result, there were substantial changes of the transport overpotential.

Water 418
article thumbnail

MIT Researchers Engineer Viruses as Scaffolds for Photocatalytic Water Oxidation

Green Car Congress

A team of MIT researchers, led by Dr. Angela Belcher, has engineered a common bacteriophage virus (M13) to function as a scaffold to mediate the co-assembly of zinc porphyrins (photosensitizer) and iridium oxide hydrosol clusters (catalyst) for visible light-driven water oxidation. Source: Nam et al., Supplementary materials.

MIT 207
article thumbnail

MIT team testing new SiC nuclear fuel-rod cladding that could lead to safer power plants

Green Car Congress

A team of researchers at MIT is developing and testing a new silicon carbide (SiC) cladding material for nuclear fuel rods that could reduce the risk of hydrogen production by roughly a thousandfold compared to the common zircaloy cladding.

MIT 247