Remove Hydrogen Remove MIT Remove Solar
article thumbnail

MIT researchers boost efficiency of carbon capture and conversion systems

Green Car Congress

Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. Meanwhile, the competing hydrogen evolution was sharply curtailed.

MIT 413
article thumbnail

Researchers from MIT and Sun Catalytix develop an artificial leaf for solar water splitting to produce hydrogen and oxygen

Green Car Congress

The traces are for solar cells of 7.7% Researchers led by MIT professor Daniel Nocera have produced an “artificial leaf”—a solar water-splitting cell producing hydrogen and oxygen that operates in near-neutral pH conditions, both with and without connecting wires. solar-to-fuels systems.

MIT 278
article thumbnail

MIT research team finds most efficient oxygen evolution reaction catalyst yet; potential for hydrogen production and rechargeable metal-air batteries

Green Car Congress

A team of MIT researchers lead by Prof. John Goodenough from the University of Texas as Austin, has found one of the most effective catalysts yet discovered for the oxygen evolution reaction (OER) for use in water-splitting to produce hydrogen or in rechargeable metal-air batteries. Yang Shao-Horn, in collaboration with Prof.

MIT 326
article thumbnail

MIT team outlines path to low-cost solar-to-fuels devices; the artificial leaf

Green Car Congress

A team of researchers at MIT has described a framework for efficiently coupling the power output of a series-connected string of single-band-gap solar cells to an electrochemical process that produces storable fuels. Such a system would use sunlight to produce a storable fuel, such as hydrogen, instead of electricity for immediate use.

MIT 218
article thumbnail

MIT team claims development of first practical artificial leaf

Green Car Congress

In a presentation at the 241 st National Meeting of the American Chemical Society today in Anaheim, Dr. Daniel Nocera of MIT said that his team has developed a practical “artificial leaf”—a type of solar cell that shows promise as an inexpensive source of electricity for the poor in developing countries.

MIT 261
article thumbnail

MIT Researchers Identify New Low-Cost Water-Splitting Catalyst

Green Car Congress

The Ni-B i films can be prepared with precise thickness control and operate at modest overpotential providing an alternative to the Co catalyst for applications in solar energy conversion. But in further work, “ we have totally gotten rid of the platinum of the hydrogen side ,” Nocera says. Earlier post.).

Low Cost 225
article thumbnail

MIT Researchers Engineer Viruses as Scaffolds for Photocatalytic Water Oxidation

Green Car Congress

A team of MIT researchers, led by Dr. Angela Belcher, has engineered a common bacteriophage virus (M13) to function as a scaffold to mediate the co-assembly of zinc porphyrins (photosensitizer) and iridium oxide hydrosol clusters (catalyst) for visible light-driven water oxidation. TEM images of the virus-templated IrO 2 nanowires.

MIT 207