Remove Hydrogen Remove Low Cost Remove Water
article thumbnail

UT El Paso-led team designs cactus-inspired low-cost, efficient water-splitting catalyst

Green Car Congress

Researchers led by engineers at The University of Texas at El Paso (UTEP) have proposed a low-cost, cactus-inspired nickel-based material to help split water more cheaply and efficiently. Nickel, however, is not as quick and effective at breaking down water into hydrogen. who led the study. Shutthanandan, and C.

El Paso 459
article thumbnail

Fukushima Hydrogen Energy Research Field (FH2R) completed in Japan; aiming for low-cost green hydrogen production; P2G

Green Car Congress

and Iwatani Corporation announced that Fukushima Hydrogen Energy Research Field (FH2R), which had been under construction in Namie town, Fukushima Prefecture since 2018, has been constructed with a solar-energy-powered 10MW-class hydrogen production unit, the largest in the world, at the end of February.

Low Cost 450
article thumbnail

Heliogen and Bloom Energy demonstrate production of low-cost green hydrogen; concentrated solar and high-temp electrolysis

Green Car Congress

Heliogen and Bloom Energy have successfully demonstrated the production of green hydrogen by integrating the companies’ technologies: Heliogen’s concentrated solar energy system and the Bloom Electrolyzer. Electricity accounts for nearly 80% of the cost of hydrogen from electrolysis. Source: Heliogen.

Low Cost 397
article thumbnail

Stanford researchers make ammonia from air and water microdroplets

Green Car Congress

Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. —Song et al. Song et al.

Water 459
article thumbnail

Rice U team creates low-cost, high-efficiency integrated device for solar-driven water splitting; solar leaf

Green Car Congress

Rice University researchers have created an efficient, low-cost device that splits water to produce hydrogen fuel. The current flows to the catalysts that turn water into hydrogen and oxygen, with a sunlight-to-hydrogen efficiency as high as 6.7%. It utilizes water and sunlight to get chemical fuels.

Low Cost 243
article thumbnail

Exeter team develops low-cost photoelectrode for spontaneous water-splitting using sunlight

Green Car Congress

The nanostructured photoelectrode results in spontaneous hydrogen evolution from water without any external bias applied with a faradaic efficiency of 30% and excellent stability. A promising way of storing solar energy is via chemical fuels, in particular hydrogen as it is considered as a future energy carrier.

Water 342
article thumbnail

KIT team designs low-cost photoreactor for efficient solar-driven synthesis

Green Car Congress

Researchers from the Karlsruhe Institute of Technology (KIT) and their Canadian partners have designed a low-cost photoreactor design for solar-driven synthesis. The photoreactors have a low level of complexity, are readily manufacturable via mass fabrication techniques in polymers, and are easy to adapt to diverse photocatalysts.

Low Cost 221