This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst. Zinc-air batteries are powered by zinc metal and oxygen from the air. They can then be applied to build rechargeable zinc-air batteries. Resources. Karahan, S.
For example, the University of California, San Diego will receive approximately $3.5 University of Houston. The University of Houston (UH) will develop a battery using a novel water-based, lithium-ion chemistry that makes use of sustainable, low-cost, high-energy, organic materials. Dendrite Free Zinc?Air Air Battery.
The Global Climate and Energy Project (GCEP) at Stanford University has awarded $10.5 Photo-electrochemically rechargeable zinc-air batteries. The zinc-air battery is a promising technology that has high energy density but limited power density. Novel inorganic-organic perovskites for photovoltaics.
And this has enhanced the catalytic activity of the hybrid catalyst, LSM-20-Co, leading to superior bifunctional electrochemical performances for the ORR and the OER in alkaline solutions. Gorte (University of Pennsylvania), Professor John M. Vohs (University of Pennsylvania), and Professor Hu Young Jeong (UNIST).
NC State University. This project seeks to combine the enzymes from a novel carbon fixation cycle in an extremophilic microbe termed an archaeon that grows optimally near 75°C with the hydrogen utilizing hydrogenase enzyme from another extremophilic archaeon to construct a hybrid enzymatic pathway. Medical University of South Carolina.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content