Remove Hybrid Remove Ni-Li Remove Universal
article thumbnail

Hybrid biomass flow battery stores electricity and produces valuable chemicals at the same time

Green Car Congress

Researchers have now developed a battery system based on a hybrid cell, which not only stores and provides electricity but also produces valuable chemicals in a flow system. Resources Li, J., By electrocatalyst (Rh1Cu single-atom alloy) and cathode redox pair (Co 0.2 V and power density of 107 mW cm −2.

Store 368
article thumbnail

Purdue researchers create hybrid technique to create nanotwinned, corrosion-resistant nickel

Green Car Congress

Now, Purdue University innovators have created a hybrid technique to fabricate a nanotwinned form of nickel that may help the future production of lifesaving medical devices, high-tech devices and vehicles with strong corrosion-resistant protection. —Li et al.

Ni-Li 269
article thumbnail

Argonne and Hanyang University Develop New High-Energy Cathode Material With Improved Thermal Stability; Good Fit for PHEV Applications

Green Car Congress

SEM of Li[Ni 0.64 Mn 0.18 ]O 2 particle with concentration gradient of Ni, Co, and Mn contents. The results, say the researchers, suggest that the cathode material could enable production of batteries that meet the demanding performance and safety requirements of plug-in hybrid electric vehicles. From Sun et al.

Ni-Li 170
article thumbnail

Novel Concentration-Gradient Shell Li-ion Cathode Material Delivers High Capacity and Excellent Cycling Stability

Green Car Congress

(a) SEM image and (b) cross-sectional images of Li[Ni 0.67 A team from Hanyang University (Korea), Iwate University (Japan) and Argonne National Laboratory in the US synthesized a novel Li[Ni 0.67 The discharge capacity of the concentration-gradient Li[Ni 0.67 and Li[(Ni 0.8

Li-ion 199
article thumbnail

University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst

Green Car Congress

University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst. Other two amorphous bimetallic, Ni 0.4 O x and Ni 0.33 Chen (2017) “Amorphous Bimetallic Oxide–Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn–Air Batteries” Adv.

Zinc Air 150
article thumbnail

Study finds resource constraints should not be a limiting factor for large-scale EV battery production

Green Car Congress

On the order of 1 billion 40 kWh Li-based EV batteries could be built with the currently estimated reserve base of lithium, according to a recent study by researchers from Lawrence Berkeley National laboratory and the University of California, Berkeley. 90% for Li-ion couples). Source: Wadia et al. Click to enlarge. Suitability.

Ni-Li 268
article thumbnail

6 DOE-funded applied battery research projects targeting Li-ion cells with >200 Wh/kg for PHEVs and EVs

Green Car Congress

The objective of the projects is to develop cells that provide more than 200 Wh/kg energy density, along with long cycle life and excellent abuse tolerance to enable 40-mile-range plug-in hybrid (PHEV) and electric vehicles (EVs). hybrid, pug-in hybrid or EV) using particle morphology, composition and nanocoatings. Lin and Y.C.

Li-ion 316