Remove Hybrid Remove Low Cost Remove Ni-Li
article thumbnail

Argonne and Hanyang University Develop New High-Energy Cathode Material With Improved Thermal Stability; Good Fit for PHEV Applications

Green Car Congress

SEM of Li[Ni 0.64 Mn 0.18 ]O 2 particle with concentration gradient of Ni, Co, and Mn contents. The results, say the researchers, suggest that the cathode material could enable production of batteries that meet the demanding performance and safety requirements of plug-in hybrid electric vehicles. From Sun et al.

Ni-Li 170
article thumbnail

6 DOE-funded applied battery research projects targeting Li-ion cells with >200 Wh/kg for PHEVs and EVs

Green Car Congress

The objective of the projects is to develop cells that provide more than 200 Wh/kg energy density, along with long cycle life and excellent abuse tolerance to enable 40-mile-range plug-in hybrid (PHEV) and electric vehicles (EVs). hybrid, pug-in hybrid or EV) using particle morphology, composition and nanocoatings. Lin and Y.C.

Li-ion 316
article thumbnail

Envia Systems announcement may herald the first wave of DOE-supported commercial high energy density Li-ion cells with Si-C anodes

Green Car Congress

As an example, the military’s BB-2590 Li-ion battery used in a range of portable systems calls for a cycle life of ≥224 and ≥ 3 years.). LIB capacity is limited in part by the intercalation of Li ions by the anode material—i.e., Envia is targeting its high energy density Li-ion cells at plug-in hybrid and electric vehicles.

Li-ion 286
article thumbnail

U Akron team develops Mn-based high performance anode for Li-ion batteries

Green Car Congress

Researchers at the University of Akron have developed hierarchical porous Mn 3 O 4 /C nanospheres as anode materials for Li-ion batteries. mA/g), excellent ratability (425 mAh/g at 4 A/g), and extremely long cycle life (no significant capacity fading after 3000 cycles at 4A/g) as an anode in a Li-ion battery. Li/Li + ).

Li-ion 199
article thumbnail

University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst

Green Car Congress

University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst. Other two amorphous bimetallic, Ni 0.4 O x and Ni 0.33 In contrast, our method produces a family of new high-performance and low-cost catalysts. —Professor Yuan Chen. Resources.

Zinc Air 150
article thumbnail

Update on Select Argonne Lab Activity with HEV and PHEV Li-ion Batteries

Green Car Congress

Khalil Amine, Senior Scientist and Manager of Argonne National Laboratory’s advanced Lithium Battery Program, provided an update on some of the activities at Argonne on advanced high-power systems for hybrid-electric (HEV) and high-energy systems for plug-in hybrid electric vehicles (PHEV). Ni 0.175 Co 0.10 Click to enlarge.

Li-ion 150
article thumbnail

KTH team develops new cost-effective water-splitting electrocatalyst for H2 production

Green Car Congress

Although some first-row transition metal oxides (for example, NiO x , NiFeO x , CoO x and MnO x ) had been developed as low-cost electrocatalysts for water oxidation, most of them still cannot compete with IrO 2 and RuO 2. A simple one-step hydrothermal method is employed to synthesize NiV-LDH. —Fan et al.

Water 150