This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
ion Ventures, a modern utility and energy storage infrastructure specialist, and LiNa Energy , a solid-state battery technology developer, concluded their first successful trial of LiNa’s proprietary solid-state sodium-nickel battery platform at an undisclosed location in South East England last week.
Natron Energy, a manufacturer of sodium-ion batteries, and Clarios International Inc., a manufacturer of low-voltage advanced battery technologies for mobility, will collaborate to manufacture the first mass-produced sodium-ion batteries. Earlier post.)
UK-based battery manufacturer AMTE Power and Faradion Ltd. , a leader in non-aqueous sodium-ion battery technolog ( earlier post ), announced a collaboration which combines Faradion’s IP with AMTE Power’s design and manufacturing capabilities. Cell Infrastructure. Safety and Transportation.
Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. of peak charge capacity.
One of the more promising candidates for batteries beyond the current standard of lithium-ion materials is the sodium-ion (Na-ion) battery. Na-ion is particularly attractive because of the greater abundance and lower cost of sodium compared with lithium. In addition, when cycled at high voltage (4.5
Pacific Gas and Electric Company (PG&E) and the California Energy Commission today unveiled a utility-scale sodium-sulfur battery energy storage system ( earlier post ) pilot project to better balance power needs of the electric grid. The system has a 4 megawatt capacity, and can store more than six hours of energy.
Researchers at Pacific Northwest National Laboratory (PNNL) have devised an alloying strategy that enables sodium-beta batteries to operate at significantly lower temperatures. The new electrode enables sodium-beta batteries to last longer, helps streamline their manufacturing process and reduces the risk of accidental fire.
company, and a leading supplier of specialty batteries and energy storage solutions for the defense, aerospace, medical, commercial and grid energy storage markets, will receive a $3-million award from the Advanced Research Projects Agency-Energy to further develop their catalytic energy storage technology. Click to enlarge.
The US Department of Energy is awarding $620 million for projects around the country to demonstrate advanced Smart Grid technologies and integrated systems. Smart grid regional demonstrations involving plug-in vehicles include (ranked by DOE funding): Columbus Southern Power Company (doing business as AEP Ohio).
Schematic of a sodium-nickel chloride cell with planar design. A planar (flat) sodium-nickel chloride battery could deliver 30% more power at lower temperatures than the typical cylindrical design, according to researchers at the US Department of Energy’s Pacific Northwest National Laboratory (PNNL). Click to enlarge.
This latest round of ARPA-E projects seek to address the remaining challenges in energy storage technologies, which could revolutionize the way Americans store and use energy in electric vehicles, the grid and beyond, while also potentially improving the access to energy for the US. Vanadium flow batteries for grid-scale energy storage.
A plot of ESOI for 7 potential grid-scale energy storage technologies. Benson from Stanford University and Stanford’s Global Climate and Energy Project (GCEP) has quantified the energetic costs of 7 different grid-scale energy storage technologies over time. Credit: Barnhart and Benson, 2013. Click to enlarge. Barnhart and Sally M.
GE Chairman and CEO Jeff Immelt shows a sodium-metal halide battery cell at the press conference announcing the battery plant. GE will open a new battery manufacturing plant in Upstate New York that will serve as the main manufacturing facility for GE’s newly launched battery business. Sodium batteries are just the opposite….
Lithium-ion and molten-salt battery costs will approach $500/kWh by 2022, reducing the high capital cost of emerging grid storage technologies. Molten-salt batteries hold the most potential to be the cheapest large-scale systems, with manufacturing improvements playing the largest role, accounting for 95% of the cost reduction.
In its new report Energy Storage on the Grid (ESG), Pike Research forecasts that global spending in the ESG market will reach a little over $22 billion over the next 10 years. Electric grids require balance in order to function properly. Energy storage on the grid is reaching a turning point. Earlier post.).
A team at the University of Maryland has demonstrated that a material consisting of a thin tin (Sn) film deposited on a hierarchical conductive wood fiber substrate is an effective anode for a sodium-ion (Na-ion) battery, and addresses some of the limitations of other Na-ion anodes such as capacity fade due to pulverization. —Zhu et al.
Based in Joplin, MO, EaglePicher is a designer and manufacturer of batteries, battery management systems and energetic devices for the defense, aerospace and medical industries. million to develop a new generation of high energy, low cost planar liquid sodium beta batteries for grid scale electrical power storage applications.
To help California mitigate its ever-growing wildfires, this year CalSEED has included companies that are innovating in technologies that will build wildfire resiliency into the grid. This novel technology would deliver safe, reliable, resilient, and cost-effective electric power in the grid. Leap Photovoltaics Inc.
billion in Recovery Act Advanced Energy Manufacturing Tax Credits for clean energy manufacturing projects across the United States. The 183 projects in 43 states include several for the manufacturing of advanced batteries; biomass projects; and vehicles. President Obama announced the award of $2.3 Aerovironment, Inc.
Reliance New Energy Solar Ltd, a wholly owned subsidiary of Reliance Industries Ltd, will acquire 100% shareholding in sodium-ion battery developer Faradion Limited ( earlier post ) for an enterprise value of £100 million (US$135 million). Sodium is the sixth-most abundant element on the planet. billion ($73.8 billion ($10.9
We will be targeting the production of materials for the high growth market of sodium-ion batteries which is displaying significant promise as an alternative to lithium-ion batteries. Wood Mackenzie expects sodium-ion batteries to take some of LFP’s share in passenger EVs and energy storage, reaching 20GWh by 2030 in its base-case scenario.
These SCALEUP “Fast-Track” teams, Natron Energy and Bridger Photonics, will receive $19 million and $5 million, respectively, to further their commercialization efforts in sodium-ion battery development and methane detection technologies, respectively. Natron Energy: Domestic Manufacturing of Sodium-Ion Batteries - $19,883,951.
NY-BEST is an industry-focused coalition working to establish New York as a global leader in energy storage technology for heavy-duty transportation, electric grid and other storage applications. of Greene to develop an electric forklift for use in freezer warehouses using GE’s Durathon sodium-halide batteries. Earlier post.)
The Faraday Institution will award up to £55 million (US$67 million) to five UK-based consortia to conduct application-inspired research to make step changes in battery chemistries, systems and manufacturing methods. The five new projects are: Next generation electrode manufacturing–Nextrode.
While the consumer electronics segment saw tepid growth in 2014, the vehicle electrification and grid-energy storage sectors experienced significant increases in energy capacity and associated revenue. —William Tokash, senior research analyst with Navigant Research.
The majority of the advanced batteries in 2016 have been manufactured in Asia Pacific and shipped around the world. The chemistries that are included in the report are all lithium ion (Li-ion) chemistries, flow battery chemistries, sodium-metal halide, and advanced lead-acid. million individual battery cells, 16.1 billion in sales.
The University of Michigan (U-M) and eight partner institutions will explore the use of ceramic ion conductors as replacements for the traditional liquid or polymer electrolytes in common lithium-ion batteries for electric vehicles and in flow cells for storing renewable energy in the grid.
Photo: China Southern Power Grid Energy Storage China’s first major sodium-ion battery energy storage station is now online, according to state-owned utility China Southern Power Grid Energy Storage. Its initial storage capacity is said to be 10 megawatt hours (MWh). The system comprises 22,000 cells. Get started here. –
Video: EV Guru: Sodium-Ion Batteries are Coming Sooner Than You think! The mining industry cannot keep up with the demand, so the alternative is to manufacture batteries based on sodium chemistry. None of the sodium Ion batteries are commercial yet, but serious competition for lithium could soon be on the way.
The extent to which renewables should dominate Australia’s energy grids is a major issue in science and politics. To ensure reliable energy supplies, grids dominated by renewables need “firming” capacity: back-up technology that can supply electricity on demand. Sodium ions are bigger and heavier than lithium ions.
The extent to which renewables should dominate Australia’s energy grids is a major issue in science and politics. To ensure reliable energy supplies, grids dominated by renewables need “firming” capacity: back-up technology that can supply electricity on demand. Sodium ions are bigger and heavier than lithium ions.
Whereas, battery EVs fueled on average grid electricity emit 105–124 g CO2 eq./km, UCS also reported that once the grid is fully renewable, the number for EVs is reduced to 41 g CO2 eq./km. So, how clean is EV battery manufacturing? Audi’s e-Tron batteries are manufactured at a carbon-neutral facility.
With the worldwide emphasis on renewable energy sources such as solar and wind, energy storage has become an essential solution for grid stability and reliability. At a certain working degree, sodium ions pass through the reversible reaction between the electrolyte diaphragm and sulfur to form the release and storage of energy.
Whereas, battery EVs fueled on average grid electricity emit 105–124 g CO2 eq./km, UCS also reported that once the grid is fully renewable, the number for EVs is reduced to 41 g CO2 eq./km. So, how clean is EV battery manufacturing? Audi’s e-Tron batteries are manufactured at a carbon-neutral facility.
Planar Na-beta Batteries for Renewable Integration and Grid Applications. Eagle Picher, in partnership with the Pacific Northwest National Laboratory, will develop a new generation of high energy, low cost planar liquid sodium beta batteries for grid scale electrical power storage applications. Earlier post.) Water (1 project).
Flow batteries are safe, stable, long-lasting, and easily refilled, qualities that suit them well for balancing the grid, providing uninterrupted power, and backing up sources of electricity. The design returned to life in the mid-20th century, was developed for possible use on a moon base, and was further improved for use in grid storage.
Silver conductors are screen printed onto the wafer surface, and copper conductors are soldered onto the array in a grid pattern. To protect the materials from moisture and damage, manufacturers laminate the entire array in adhesive polymers—usually ethylene-vinyl acetate. First Solar, a global PV manufacturer based in Tempe, Ariz.,
For now, the burden is on EV manufacturers to sell that vision, but just as important is the supporting infrastructure. To reach that demographic, EV manufacturers have to show that electric vehicles are a better alternative in terms of cost and performance. Drivers want a safe, affordable and comfortable way to get from A to B.
When biogas is produced and used on-site in a fuel cell, fuel utilization or overall energy efficiency can reach 90% and can reduce emissions by more than 90% by weight as compared to the emissions associated with grid electricity generation. The 2015 cost target was $2-$3/gge.
It is the most sustainable and low-cost battery that can be used in high-voltage applications, battery-operated medical devices, stationary grids and regenerative braking systems in electric vehicles. This battery doesn’t need any of the toxic metals that are costly and heavy.
Considering a use case with the following supply chain, The total emissions for lithium extraction in Chile, which then stays in Chile for lithium processing and proceeds to Korea for cell manufacturing and vehicle assembly will be 1.5 Here is another research paper from a traditional ICE car manufacturer - Volkswagen. metric tons (5.07
To address apprehensions about battery reliability in contemporary electric vehicles, manufacturers integrate advanced Battery Management Systems. They are gaining ground with several manufacturing plants operational or under construction.
Major manufacturers will release new models of heavy-duty trucks and delivery vans. The batteries that use sodium instead of the pricey and rare lithium are the ones that are the closest to being on the market. billion in 2021 to $848.94 billion by 2030 by a cumulative annual growth rate (CAGR) of 9.51%%.
Umicore is actively working with cell manufacturers to advance SSB tech, and recently opened a material prototyping center in Belgium that supports all the steps in SSB production, from formulation to testing. Automakers have high hopes for solid-state batteries, mainly because of their improved safety characteristics.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content