This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Supported by an ARPA-E grant, LiRAP has proven to be a safe alternative compared to the liquid electrolytes used in most of today’s lithium ion batteries. PATHION is working on a derivative for Li-sulfur batteries as well as a derivative that could be applied in a sodium-ion battery. Lithium sulfur.
The California Sustainable Energy Entrepreneur Development (CalSEED) program announced that the fourth cohort of innovative clean energy concepts has been approved by the California Energy Commission (CEC); 28 companies out of 212 were selected to receive grants of $150,000 each. rechargeable battery?technology?that is developing a?rechargeable
lithium, sodium or potassium) on a copper–carbon cathode current collector at a voltage of more than 3.0 Traditional rechargeable batteries use a liquid electrolyte and an oxide as a cathode host into which the working cation of the electrolyte is inserted reversibly over a finite solid-solution range. Resources. Grundish, A.
A number of licences have recently been granted for patents within the IP pooled portfolio. Technology transfer and know-how will be provided with the support of Hydro-Québec researchers to enable rapid and efficient implementation of the technology in battery products. Its sole shareholder is the Québec government.
These carbonaceous electrodes could also be used for rechargeablesodium-ion batteries. The researchers acknowledge funding from Purdue University, the university’s School of Chemical Engineering and the Kirk Endowment grant from the Birck Nanotechnology Center. Batteries'
The hot brine that comes up from the subsurface as part of geothermal power production at the Salton Sea in California is a rich stew of minerals, including iron, magnesium, calcium, sodium, and lithium. Berkeley Lab has projects with both under grants from the California Energy Commission.) Credit: Jenny Nuss/Berkeley Lab).
The battery in her EV is a variation on the flow battery , a design in which spent electrolyte is replaced rather than recharged. The scientists found the nanofluids could be used in a system with an energy-storing potential approaching that of a lithium-ion battery and with the pumpable recharging of a flow battery.
Several types of recipients were eligible for funding, such as private industry, universities, and federal labs, through contracts, grants, and other mechanisms. Sodium batteries. In addition to these obligations, DOE supported about $596 million in direct loans. through 2012. Number of obligations. Funding obligations. Capacitors.
Energy is something we take for granted, because we just plug things into the wall, and it feels as inevitable as air. A team of biologists built a custom Kinefox GPS tracker that wildlife—including this European bison test subject—can recharge simply by moving around as usual.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content