This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The technology group Wärtsilä is developing the combustion process in its gas engines to enable them to burn 100% hydrogen fuel. Wärtsilä has researched hydrogen as a fuel for 20 years, and has tested its engines with blends of up to 60% hydrogen and 40% natural gas.
This award marks the first Advanced Class Gas Turbines in the industry specifically designed and purchased as part of a comprehensive plan to sequentially transition from coal, to natural gas and finally to renewable hydrogen fuel, and creates a roadmap for the global industry to follow. MHPS gas turbines have more than 3.5
A development team from CoorsTek Membrane Sciences, in collaboration with international research partners, have successfully used ceramic membrane technology to develop a scalable hydrogen generator that makes hydrogen from electricity and fuels including natural gas, biogas and ammonia with near zero energy loss.
Researchers at the University of Ontario Institute of Technology are developing a new method to dissociate water vapor into hydrogengas by microwave-generated plasma (plasmolysis). A) An experimental setup for full microwave hydrogen production and (b) Schematic of the plasma reactor placed inside the microwave.
With clean hydrogen gaining recognition worldwide as a carbon-free fuel capable of making a significant contribution to addressing climate change, Southern California Gas Co. SoCalGas) will field test a new technology that can simultaneously separate and compress hydrogen from a blend of hydrogen and natural gas.
Canada-based Aurora Hydrogen, a company developing emission-free hydrogen production technology, has raised $10 million in Series A funding led by Energy Innovation Capital. As the world looks to quickly decarbonize transportation and industry, hydrogen demand is expected to increase rapidly, from $130 billion today to $2.5
C-Job Naval Architects has designed a new class of liquid hydrogen tanker in partnership with LH2 Europe. LH2 Europe will use the abundant renewable electricity in Scotland to produce green hydrogen and market it at a competitive price with diesel. Hydrogen will be essential to the future of energy. Vessel specifications.
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. This gas–liquid–solid heterogeneous catalytic system synthesizes ammonia in 0.2 The conversion rate reaches 32.9 ± 1.38
Minneapolis-based Xcel Energy will work with Idaho National Laboratory to demonstrate a system that uses a nuclear plant’s steam and electricity to split water. The resulting hydrogen will initially be used at the power plant, but it could eventually be sold to other industries. Earlier post.) Prairie Island.
Africa can produce 50 million tons of green hydrogen a year by 2035, according to a new study by the European Investment Bank (EIB), International Solar Alliance and the African Union, with the support of the Government of Mauritania, HyDeal and UCLG Africa. This is equivalent to energy costs of US$60 a barrel.
Southern California Gas Co. SoCalGas) and H2U Technologies are testing a new electrolyzer, called the Gramme 50, for the production of green hydrogen. The green hydrogen produced by this new technology can be used for clean transportation or industrial applications or blended with natural gas.
The Dutch Institute for Fundamental Energy Research ( DIFFER ) is partnering with Toyota Motor Europe (TME) to develop a device that absorbs water vapor, and splits it into hydrogen and oxygen directly using solar energy. In this project, DIFFER and TME are exploring an innovative way to produce hydrogen directly out of humid air.
Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogengas and hydrogen peroxide at the same time from sunlight and water. Hydrogen has gained attention as one of the possible next generation energy sources. under 600nm). Tachikawa et al.
thyssenkrupp’s proprietary water electrolysis technology for the production of. green hydrogen meets the requirements for participation in the primary control reserve market. Our plants are thus making a significant contribution to ensuring both a stable power supply and the cost-effectiveness of green hydrogen.
China Petroleum & Chemical Corporation (Sinopec) officially launched China’s first methanol-to-hydrogen and hydrogen refueling service station in Dalian, China. The storage and transportation cost of methanol is also much lower than hydrogen, making methanol-to-hydrogen an attractive hydrogen production technology.
and Iwatani Corporation announced that Fukushima Hydrogen Energy Research Field (FH2R), which had been under construction in Namie town, Fukushima Prefecture since 2018, has been constructed with a solar-energy-powered 10MW-class hydrogen production unit, the largest in the world, at the end of February.
The EU-funded HyMethShip project developed a system that innovatively combined a membrane reactor, a CO 2 capture system, a storage system for CO 2 and methanol as well as a hydrogen-fueled combustion engine to power ships. The bottom part shows how hydrogen for the engine is obtained from methanol in the reactor (blue arrow).
Toshiba Energy Systems & Solutions Corporation (Toshiba ESS) announced that its hydrogen-based autonomous energy supply system H2One, which Toshiba ESS delivered and installed on the rooftop of Toranomon Hills Business Tower (Minato-ku, Tokyo), has started full-scale operation with the opening of commercial facilities.
Researchers at the Fraunhofer IFF in Germany are designing the distributed and modular production and distribution of green hydrogen for industry, business and transportation throughout the value chain—a hydrogen factory of the future. The hydrogen factory of the future. The outcome is always green hydrogen.
A study led by Norwegian climate center CICERO has found that the global warming effect of leaked hydrogen is almost 12 times stronger than that of CO 2. Unlike exhaust from burning coal and gas that contains CO 2 , burning hydrogen emits only water vapor and oxygen. —Dr Sand The GWP100 of hydrogen.
Electrolytic hydrogen production powered by renewable energy is seen as an environmentally friendly means to ameliorate global climate and energy problems. Both half reactions of water electrolysis—hydrogen and oxygen evolution—are unfortunately slow and require a lot of power. Zhang, S.L., and Lou, X.W.
With efficiencies above 90%, Topsoe’s proprietary SOEC electrolyzers offer superior performance in electrolysis of water into hydrogen—e.g., SOECs can be used for direct electrochemical conversion of steam (H 2 O), carbon dioxide (CO 2 ), or both into hydrogen (H 2 ), carbon monoxide (CO), or syngas (H 2 +CO), respectively.
Ultra Safe Nuclear Corporation (USNC), a US-based vertical integrator of nuclear technologies and services, Hyundai Engineering and SK E&C are teaming up to conduct research and development for carbon-free hydrogen production. It is also participating in a government-led green hydrogen production demonstration project.
Airbus is developing a hydrogen-powered fuel cell engine. The A380 MSN1 flight test aircraft for new hydrogen technologies is currently being modified to carry liquid hydrogen tanks and their associated distribution systems. There are two ways hydrogen can be used as a power source for aircraft propulsion. Earlier post.).
ENEOS Corporation has constructed a demonstration plant in Brisbane, Australia, to produce methylcyclohexane (MCH), a liquid organic hydrogen carrier (LOHC), using its proprietary low-cost electrochemical synthesis of organic hydride method Direct MCH. MCH contains more than 500 times more hydrogen per unit volume than hydrogengas.
The design proved successful in generating hydrogengas without producing large amounts of harmful byproducts. Generation of H 2 and O 2 from untreated water sources represents a promising alternative to ultrapure water required in contemporary proton exchange membrane-based electrolysis.
million) ammonia cracker prototype designed to produce green hydrogen at industrial scale. The prototype will use ammonia to deliver 200kg of hydrogen a day—enough to power around 5-10 hydrogen fuel cell-electric buses. Ammonia has a high hydrogen density and is readily transportable in bulk. million (US$4.24
Researchers in Israel have designed a separate-cell photoelectrochemical (PEC) water-splitting system with decoupled hydrogen and oxygen cells for centralized hydrogen production. It addresses the challenges of designing, building, and optimizing the device for assessing large-scale hydrogen generation. Landman et al.
Element 1 Corporation (e1NA), Zhejiang Methanol Hydrogen Technology (ZMHT) and Zhejiang Element 1 (e1China) have formed a joint venture company—Zhejiang Hydrogen One Energy Technology Co., — to drive methanol-based hydrogen generation technology and commercialize e1NA’s technology throughout Greater China.
Apart from the rapid development of battery technology, hydrogen is a good complementary option as an alternative fuel for long-distance transport. When in use, fuel cells do not cause any climate-damaging emissions, as they only emit water vapor. The aim is to test the entire hydrogen ecosystem in transport logistics.
a pioneer in natural gas decarbonization, recently raised $11.5 C-Zero’s technology, which was initially developed at the University of California, Santa Barbara, uses innovative thermocatalysis to split methane into hydrogen and solid carbon in a process known as methane pyrolysis. C-Zero Inc., Background.
has purchased 25 hydrogen-fueled buses from Solaris Bus & Coach. The hydrogen units will join the fleet of MPK in the second half of 2023. This is the largest order so far for Solaris hydrogen Urbino hydrogen buses. The hydrogen system components will have the highest safety systems available on the market.
SSAB, LKAB and Vattenfall have now produced hydrogen-reduced sponge iron on a pilot scale. The test production was carried out in HYBRIT’s pilot plant in Luleå and shows that it is possible to reduce iron ore with fossil-free hydrogen, instead of removing the oxygen with coal and coke. So far, about 100 tons have been produced.
Extended road testing of the vehicle is underway in Asia and represents a significant step towards the commercialization of e1’s onboard hydrogen generation technology. The company stated that it is becoming increasingly engaged with partners around the world on a wide range of hydrogen energy projects.
Researchers at Germany’s Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden have developed an ultra-high-capacity hydrogen storage substance for PEM fuel cell applications based on solid magnesium hydride. Fraunhofer’s POWERPASTE releases hydrogen on contact with water. 1 kg hydrogen).
Mitsubishi Power Americas and Texas Brine Company are collaborating to develop large-scale long-duration hydrogen storage solutions to support decarbonization efforts across the eastern United States. Long-duration hydrogen storage is a key enabling technology for the transition to a net zero carbon energy future.
New hydrogen production technology developed at the University of British Columbia (UBC) will be tested in a $7-million project between UBC, the government of Alberta and Alberta utility company ATCO. The team will test their system at a facility in Fort Saskatchewan, Alberta, run by ATCO, Alberta’s largest natural gas distributor.
Researchers at Uppsala University have developed photocatalytic composite polymer nanoparticles (“polymer dots”) that show promising performance and stability for the production of hydrogen from water and sunlight. Since polymer dots (Pdots) are so tiny, they are evenly distributed in water. 0c12654.
AW-Energy Oy is entering the commercial hydrogen market by introducing a combined WaveRoller and HydrogenHub process for the production of green hydrogen. In AW-Energy’s concept, wave energy complements solar power production to enable large-scale green hydrogen. —Christopher Ridgewell, CEO of AW-Energy Oy.
million to fund 31 projects to advance next-generation clean hydrogen technologies and support DOE’s recently announced Hydrogen Energy Earthshot initiative ( earlier post ) to reduce the cost and accelerate breakthroughs in the clean hydrogen sector. Domestic hydrogen supply chain components and refueling technologies.
Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. of hydrogen is currently produced via water electrolysis and only a fraction of this production is powered by renewable energy.
million) to five demonstration phase projects for low-carbon hydrogen production. The hydrogen projects receiving funding are: Dolphyn. The project concerns the production of hydrogen at scale from offshore floating wind in deep water locations. HyNet – low carbon hydrogen plant. Acorn Hydrogen Project.
Researchers in Spain have developed hydrogen production without contact electrodes via water electrolysis mediated by the microwave-triggered redox activation of solid-state ionic materials at low temperatures ( Nature Energy. In thermochemical cycles, the highly energy-demanding splitting of water molecules (?H Serra et al.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content