This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The technology group Wärtsilä is developing the combustion process in its gas engines to enable them to burn 100% hydrogen fuel. Wärtsilä has researched hydrogen as a fuel for 20 years, and has tested its engines with blends of up to 60% hydrogen and 40% natural gas.
Africa can produce 50 million tons of green hydrogen a year by 2035, according to a new study by the European Investment Bank (EIB), International Solar Alliance and the African Union, with the support of the Government of Mauritania, HyDeal and UCLG Africa. This is equivalent to energy costs of US$60 a barrel.
“Blue” hydrogen—produced through steam methane reforming (SMR) of natural gas or coal gasification, but with CO 2 capture and storage—is being described as having low or zero carbon emissions. Even if true though, the use of blue hydrogen appears difficult to justify on climate grounds. —Howarth and Jacobson.
Researchers at The Ohio State University have used a chemical looping process to produce hydrogen from hydrogen sulfide gas—commonly called “sewer gas”. Compared with the undoped sulfur carrier, Mo dopant facilitates the surface hydrogen diffusion, thus promoting the overall H 2 S conversion.
A study led by Norwegian climate center CICERO has found that the global warming effect of leaked hydrogen is almost 12 times stronger than that of CO 2. Unlike exhaust from burning coal and gas that contains CO 2 , burning hydrogen emits only water vapor and oxygen. —Dr Sand The GWP100 of hydrogen.
With clean hydrogen gaining recognition worldwide as a carbon-free fuel capable of making a significant contribution to addressing climate change, Southern California Gas Co. SoCalGas) will field test a new technology that can simultaneously separate and compress hydrogen from a blend of hydrogen and natural gas.
Independent research and business intelligence company Rystad Energy estimates that there are about 91 planned hydrogen pipeline projects in the world, totaling 30,300 kilometers and due to come online by around 2035. New hydrogen infrastructure is starting to materialize as the world seeks to accelerate its path to net zero.
Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. The open-access paper on the study is published in the RSC journal Energy & Environmental Science. Palmer et al.
Pacific Gas and Electric Company (PG&E) is launching the US’ most comprehensive end-to-end hydrogenstudy and demonstration facility, which will examine the future potential of the zero-carbon fuel hydrogen as a renewable energy source for not only PG&E customers but the entire global natural gas industry.
Norwegian state-owned energy company Equinor and Germany-based energy company RWE have agreed to work together to develop large-scale value chains for low carbon hydrogen. The cooperation has these main building blocks: Construction of new gas power plants (CCGTs), contributing to Germany’s phase-out roadmap for coal.
The results show there is no realistic pathway to full decarbonization of internal combustion engine vehicles, and that only battery and hydrogen fuel-cell EVs have potential to be very low-GHG passenger vehicle pathways. This study uses recent data on industrial-scale battery production and considers regional battery supply chains.
RINA, the inspection, certification and consulting engineering multinational, and AFRY, a European leader in engineering, design, and advisory services, have undertaken an initial study of how the Gulf region and Europe could be linked directly with a pipeline to transport low-carbon hydrogen. million tonnes of hydrogen annually.
The project is supported by DOE’s Hydrogen and Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy. The project partners will generate zero-carbon hydrogen onsite via electrolysis with solar and wind power and reformation of renewable natural gas from a Texas landfill.
Cemvita Factory announced multiple developments with its Gold Hydrogen business. Cemvita defines Gold Hydrogen as the biological production of hydrogen in the subsurface through the consumption of trapped or abandoned resources. The hydrogen production in this trial exceeded our expectations. billion in 2020.
Japan’s New Energy and Industrial Technology Development Organization (NEDO) has appointed Sumitomo, Chiyoda, Toyota Motor, Japan Research Institute and Sumitomo Mitsui Banking to conduct a feasibility study on the receiving and distribution business of hydrogen in Chubu Region. Toho Gas Co., Air Liquide Japan G.K.,
Southern California Gas Co. SoCalGas) and H2U Technologies are testing a new electrolyzer, called the Gramme 50, for the production of green hydrogen. The green hydrogen produced by this new technology can be used for clean transportation or industrial applications or blended with natural gas.
million in federal funding for cost-shared research and development projects under the funding opportunity announcement (FOA) FE-FOA 0002397 , University Turbines Systems Research (UTSR) — Focus on Hydrogen Fuels. The UTSR Program conducts research to increase the efficiency and performance of gas turbines while lowering emissions.
Australia-based Woodside has signed an agreement with Japanese companies JERA Inc, Marubeni Corporation and IHI Corporation to undertake a joint study examining the large-scale export of hydrogen as ammonia for use decarbonizing coal-fired power generation in Japan. Green hydrogen is produced from renewable energy using electrolysis.
Airbus is developing a hydrogen-powered fuel cell engine. The A380 MSN1 flight test aircraft for new hydrogen technologies is currently being modified to carry liquid hydrogen tanks and their associated distribution systems. There are two ways hydrogen can be used as a power source for aircraft propulsion. Earlier post.).
A recent study has suggested a new strategy for storing hydrogen, using natural gas as a stabilizer. The research proposed a practical gas phase modulator based synthesis of a hydrogen-natural gas blend (HNGB) without generating chemical waste after dissociation for the immediate service. Credit: KAIST.
A hydrogen exchange, similar to electricity and gas exchanges, could act as a catalyst for a market for climate-neutral hydrogen, according to an exploratory study, “A Hydrogen Exchange for the Climate”, presented to Eric Wiebes, the Netherlands Minister of Economic Affairs and Climate Policy.
Rio Tinto has partnered with the Australian Renewable Energy Agency (ARENA) to study whether hydrogen can replace natural gas in alumina refineries to reduce emissions. Calcination is an energy-intensive process, for which the current predominant fuel is natural gas. Rio Tinto will conduct a $1.2-million
The design proved successful in generating hydrogengas without producing large amounts of harmful byproducts. The results of their study, published in Joule , could help advance efforts to produce low-carbon fuels. A representation of the team’s bipolar membrane system that converts seawater into hydrogengas.
A team from Hamad Bin Khalifa University in Qatar has comprehensively reviewed various ammonia decomposition techniques to produce clean hydrogen by recovering the boil-off ammonia while integrating solar energy infrastructures onboard a ship for electricity and heat requirements. The review paper is published in the journal Fuel.
Researchers at the University of Ontario Institute of Technology are developing a new method to dissociate water vapor into hydrogengas by microwave-generated plasma (plasmolysis). A) An experimental setup for full microwave hydrogen production and (b) Schematic of the plasma reactor placed inside the microwave. Chehade et al.
Italy-based Snam, a global energy infrastructure company, and RINA, a global testing, inspection, certification and engineering consultancy services firm, have signed a Memorandum of Understanding to collaborate in the hydrogen sector, in order to realize the significant potential of hydrogen as a fundamental energy carrier.
Germany will invest up to €290 million to launch the Innovation and Technology Center for Hydrogen (Innovations- und Technologiezentrum für Wasserstoff, ITZ H 2 ), following the positive conclusion of a feasibility study (German only). ITZ Hydrogen services for companies and potential users. Source: BMDV. This we do.
Naturgy and Enagás are studying the production of green hydrogen from a 250MW floating offshore wind farm and another 100MW onshore wind farm in Asturias (Spain) for industrial consumption in this Autonomous Region. Enagás and ACCIONA launch green hydrogen project in Mallorca.
Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogengas and hydrogen peroxide at the same time from sunlight and water. Hydrogen has gained attention as one of the possible next generation energy sources. under 600nm).
Siemens Energy, Duke Energy and Clemson University have teamed up to study the use of hydrogen for energy storage and as a low- or no-carbon fuel source to produce energy at Duke Energy’s combined heat and power plant located at Clemson University in South Carolina.
A study by two researchers at Sandia National Laboratories has concluded that building and operating a high-speed passenger ferry solely powered by hydrogen fuel cells within the context of the San Francisco Bay is technically feasible, with full regulatory acceptance as well as the requisite associated hydrogen fueling infrastructure.
Engineers from UNSW Sydney (Australia) have successfully converted a diesel engine to run as a dual-fuel hydrogen-diesel engine, reducing CO 2 emissions by more than 85% compared to conventional diesel. In a paper published in the International Journal of Hydrogen Energy, Prof. below the amount produced by the diesel powered engine.
A new study by a team at the National Renewable Energy Laboratory (NREL) concludes that a high-pressure, scalable, intra-city hydrogen pipeline system could improve the economics and logistics of hydrogen delivery, making it potentially cost-competitive with gasoline. 200 psi, in natural gas distribution pipelines.
As the global energy market shifts from coal, petroleum fuel, and natural gas to more environmentally friendly primary energy sources, hydrogen is becoming a crucial pillar in the clean energy movement. Understanding where the hydrogen goes under strain in a bulk material is critical to understanding embrittlement.
Ovako, a European manufacturer of steel and one of the largest steel recyclers in the Nordic countries, is inaugurating the hydrogen plant at its Hofors mill. Ovako’s hydrogen plant is the world’s first facility for producing fossil-free hydrogen to heat steel before rolling. A 2020 study by Zanoni et al. Earlier post.)
Mitsubishi Power Americas and Texas Brine Company are collaborating to develop large-scale long-duration hydrogen storage solutions to support decarbonization efforts across the eastern United States. Long-duration hydrogen storage is a key enabling technology for the transition to a net zero carbon energy future.
Southern California Gas Company (SoCalGas) announced it will be working together with Sierra Northern Railway, Gas Technology Institute (GTI), and other technical experts to develop and test a zero-emission hydrogen fuel cell engine for a switcher locomotive. Earlier post.).
million) to five demonstration phase projects for low-carbon hydrogen production. The hydrogen projects receiving funding are: Dolphyn. The project concerns the production of hydrogen at scale from offshore floating wind in deep water locations. HyNet – low carbon hydrogen plant. Acorn Hydrogen Project.
The European Commission’s Joint Research Center (JRC) published a policy brief showing that delivery of large amounts of renewable hydrogen over long distances could be cost-effective. This finding is important because access to sufficient amounts of renewable hydrogen at low cost is essential for achieving a climate neutral Europe by 2050.
bp signed a memorandum of understanding (MoU) with the Government of Egypt under which bp will explore the potential for establishing a new green hydrogen production facility in the country. It is intended that high-potential locations across Egypt will be considered as part of the feasibility study, targeting best-in-class resources.
Siemens Gamesa and Siemens Energy are joining forces to develop an innovative solution that fully integrates an electrolyzer into an offshore wind turbine as a single synchronized system to produce green hydrogen directly. The solution will lower the cost of hydrogen by being able to run off grid, opening up more and better wind sites.
bp is developing plans for the UK’s largest blue hydrogen production facility, targeting 1GW of hydrogen production by 2030. bp’s hydrogen business and make a major contribution to the UK Government’s target of developing 5GW of hydrogen production by 2030. which is then captured and permanently stored.
announced the development of a hydrogen fuel cell system for maritime applications based on fuel cell technology for automobiles, as part of efforts to offer environment-friendly powertrain solutions. As a part of this challenge, Yanmar has been working on development of future powertrains using hydrogen as fuel. Yanmar Holdings Co.,
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content