This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
This award marks the first Advanced Class Gas Turbines in the industry specifically designed and purchased as part of a comprehensive plan to sequentially transition from coal, to natural gas and finally to renewable hydrogen fuel, and creates a roadmap for the global industry to follow. MHPS gas turbines have more than 3.5
The technology group Wärtsilä is developing the combustion process in its gas engines to enable them to burn 100% hydrogen fuel. Wärtsilä has researched hydrogen as a fuel for 20 years, and has tested its engines with blends of up to 60% hydrogen and 40% natural gas.
A consortium comprising Engie Solutions, Siemens Gas and Power, Centrax, Arttic, German Aerospace Center (DLR) and four European universities is implementing the HYFLEXPOWER project funded by the European Commission under the Horizon 2020 Framework Program for Research and Innovation (Grant Agreement 884229).
“Blue” hydrogen—produced through steam methane reforming (SMR) of natural gas or coal gasification, but with CO 2 capture and storage—is being described as having low or zero carbon emissions. Our analysis assumes that captured carbon dioxide can be stored indefinitely, an optimistic and unproven assumption.
Independent research and business intelligence company Rystad Energy estimates that there are about 91 planned hydrogen pipeline projects in the world, totaling 30,300 kilometers and due to come online by around 2035. New hydrogen infrastructure is starting to materialize as the world seeks to accelerate its path to net zero.
A coalition of major oil & gas, power, automotive, fuel cell, and hydrogen companies have developed and released the full new report, a “ Road Map to a US Hydrogen Economy. ” Road Map to a US Hydrogen Economy ”. —Fuel Cell and Hydrogen Energy Association (FCHEA) President Morry Markowitz.
and Iwatani Corporation announced that Fukushima Hydrogen Energy Research Field (FH2R), which had been under construction in Namie town, Fukushima Prefecture since 2018, has been constructed with a solar-energy-powered 10MW-class hydrogen production unit, the largest in the world, at the end of February.
Norwegian state-owned energy company Equinor and Germany-based energy company RWE have agreed to work together to develop large-scale value chains for low carbon hydrogen. The cooperation has these main building blocks: Construction of new gas power plants (CCGTs), contributing to Germany’s phase-out roadmap for coal.
has provided a 20-megawatt PEM electrolyzer system to generate green hydrogen, making it the largest in operation in the world. The Cummins electrolyzer system is installed at the Air Liquide hydrogen production facility in Bécancour, Québec. 3,000 tons of hydrogen annually using clean hydropower.
A recent study has suggested a new strategy for storinghydrogen, using natural gas as a stabilizer. The research proposed a practical gas phase modulator based synthesis of a hydrogen-natural gas blend (HNGB) without generating chemical waste after dissociation for the immediate service. Credit: KAIST.
Southern California Gas Co. SoCalGas) and H2U Technologies are testing a new electrolyzer, called the Gramme 50, for the production of green hydrogen. The green hydrogen produced by this new technology can be used for clean transportation or industrial applications or blended with natural gas.
Toshiba Energy Systems & Solutions Corporation (Toshiba ESS) announced that its hydrogen-based autonomous energy supply system H2One, which Toshiba ESS delivered and installed on the rooftop of Toranomon Hills Business Tower (Minato-ku, Tokyo), has started full-scale operation with the opening of commercial facilities.
Researchers at the Fraunhofer IFF in Germany are designing the distributed and modular production and distribution of green hydrogen for industry, business and transportation throughout the value chain—a hydrogen factory of the future. The hydrogen factory of the future. The outcome is always green hydrogen.
million) ammonia cracker prototype designed to produce green hydrogen at industrial scale. The prototype will use ammonia to deliver 200kg of hydrogen a day—enough to power around 5-10 hydrogen fuel cell-electric buses. Ammonia has a high hydrogen density and is readily transportable in bulk. million (US$4.24
GKN Hydrogen and Southern California Gas Co. SoCalGas) will work with the US Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL) on an innovative green hydrogen storage solution. GKN Hydrogen’s HY2MEGA can enable safe, long duration clean energy storage without the need for compression.
The loan guarantee will help finance construction of the largest clean hydrogen storage facility in the world, capable of providing long-term low-cost, seasonal energy storage, furthering grid stability. The US Department of Energy (DOE) closed on a $504.4-million Rendering of Advanced Clean Energy Storage salt cavern.
Leading Australian energy infrastructure company Jemena has signed a new deal to supply Australia’s emerging zero emission vehicle industry with renewably generated green hydrogen. Jemena’s Managing Director, Frank Tudor, said the deal will make hydrogengas generated from solar and wind power available to the vehicle industry.
GTI, a research, development and training organization focused on natural gas and energy markets, is launching a hydrogen technology center. GTI focuses its R&D efforts on the generation of clean hydrogen using hydrocarbon fuels that incorporate carbon capture and/or carbon sequestration in a cost-effective manner.
The EU-funded HyMethShip project developed a system that innovatively combined a membrane reactor, a CO 2 capture system, a storage system for CO 2 and methanol as well as a hydrogen-fueled combustion engine to power ships. The bottom part shows how hydrogen for the engine is obtained from methanol in the reactor (blue arrow).
in conjunction with the Government of Canada and the Province of Alberta, announced a multi-billion dollar plan to build a landmark new net-zero blue hydrogen energy complex. Canada’s clean energy diversification strategy and regulatory framework make clear that hydrogen is a key enabler for carbon neutrality by 2050. blue hydrogen).
RWE's FUREC project, which aims to produce circular and green hydrogen from non-recyclable municipal solid waste in Limburg, the Netherlands, received a €108-million grant from the EU’s Innovation Fund. The plant is expected to produce 54,000 tonnes of hydrogen per year. A final investment decision is to be made in 2024.
A methanation plant expansion to the existing power-to-gas (PtG) facility in Falkenhagen, Germany has officially opened as part of the international €28-million (US$33.5-million) million) STORE&GO research project. Moreover, it provides for unrestricted use of the natural gas infrastructure, including for transport and storage.
SSAB, LKAB and Vattenfall have now produced hydrogen-reduced sponge iron on a pilot scale. The test production was carried out in HYBRIT’s pilot plant in Luleå and shows that it is possible to reduce iron ore with fossil-free hydrogen, instead of removing the oxygen with coal and coke. So far, about 100 tons have been produced.
Mitsubishi Power Americas and Texas Brine Company are collaborating to develop large-scale long-duration hydrogen storage solutions to support decarbonization efforts across the eastern United States. Long-duration hydrogen storage is a key enabling technology for the transition to a net zero carbon energy future.
Researchers led by Andreas Stierle at Deutsches Elektronen-Synchrotron (DESY) have laid the foundations for an alternative method for storinghydrogen, using iridium-seeded palladium nanocluster superlattices with 1.2 The fact that palladium can absorb hydrogen like a sponge has been known for some time. —Andreas Stierle.
A research team led by Northwestern University has designed and synthesized new metal-organic framework (MOF) materials with ultrahigh porosity and surface area for the storage of hydrogen and methane for fuel cell-powered vehicles. 3] at 270 K; it also shows one of the best deliverable hydrogen capacities (14.0 1 [238 cm 3 (STP) cm?3]
a pioneer in natural gas decarbonization, recently raised $11.5 C-Zero’s technology, which was initially developed at the University of California, Santa Barbara, uses innovative thermocatalysis to split methane into hydrogen and solid carbon in a process known as methane pyrolysis. C-Zero Inc., cal/mol H 2 ) is slightly (.
Extended road testing of the vehicle is underway in Asia and represents a significant step towards the commercialization of e1’s onboard hydrogen generation technology. The company stated that it is becoming increasingly engaged with partners around the world on a wide range of hydrogen energy projects.
Lower Saxony's Environment Minister Olaf Lies presented the funding notification of €2.375 million for Uniper’s planned hydrogen pilot project at the Krummhoern natural gas storage site. Hydrogen will be a central element for the success of the energy transition. The advantage of hydrogen is that it can be stored.
In a new report , Deloitte forecasts that the clean hydrogen market will top the value of the liquid natural gas trade by 2030 and grow further to US$1.4 To achieve climate neutrality by 2050, the clean hydrogen market capacity can grow to 170 million tons (MtH 2 eq) in 2030 and to 600 MtH 2 eq in 2050.
Australia-based Global Energy Ventures (GEV) and Pacific Hydro Australia Developments Pty Ltd (Pacific Hydro) have executed a Memorandum of Understanding (MOU) to explore opportunities regarding the production, storage, loading, ground and marine transportation of green hydrogen produced by Pacific Hydro’s Ord Hydrogen Project.
Starfire Energy, a Colorado-based developer of modular chemical plants for the carbon-free production of ammonia and hydrogen, has closed a major funding round. Ammonia offers an energy density comparable to fossil fuels and significantly higher than Li-ion batteries and compressed or liquid hydrogen.
All of these concepts rely on hydrogen as a primary power source—an option which Airbus believes holds exceptional promise as a clean aviation fuel and is likely to be a solution for aerospace and many other industries to meet their climate-neutral targets. —Guillaume Faury, Airbus CEO. —Guillaume Faury.
Syzygy Plasmonics , LOTTE Chemical and LOTTE Fine Chemical (LOTTE Chemical HQ), and Sumitomo Corporation of Americas (SCOA) announced a joint development agreement to test a photocatalytic reactor for clean hydrogen production. Among other climate-focused goals, the company is setting the stage to advance the hydrogen economy in Korea.
Siemens Gamesa and Siemens Energy are joining forces to develop an innovative solution that fully integrates an electrolyzer into an offshore wind turbine as a single synchronized system to produce green hydrogen directly. It is a prime example of enabling us to store and transport wind energy, thus reducing the carbon footprint of economy.
Researchers at Germany’s Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden have developed an ultra-high-capacity hydrogen storage substance for PEM fuel cell applications based on solid magnesium hydride. Fraunhofer’s POWERPASTE releases hydrogen on contact with water. 1 kg hydrogen).
bp is developing plans for the UK’s largest blue hydrogen production facility, targeting 1GW of hydrogen production by 2030. bp’s hydrogen business and make a major contribution to the UK Government’s target of developing 5GW of hydrogen production by 2030. which is then captured and permanently stored.
Bioscience engineers at KU Leuven have created a solar panel that produces hydrogengas from moisture in the air. If that electric power is used to split the water into hydrogengas and oxygen, you lose a lot of energy. m² that converts 15% of the sunlight straight into hydrogengas.
Bloom Energy, a developer of solid oxide fuel cell power generators, announced the ability of its Energy Servers to operate on renewable hydrogen. Current Bloom Energy Servers generate electricity using natural gas or biogas as fuel. Bloom Energy Servers can operate on pure hydrogen or a combination of natural gas and hydrogen.
Green, the Hoyt Hottel Professor in Chemical Engineering, is developing a technology that allows liquid organic hydrogen carriers (LOHCs) not only to deliver hydrogen to the trucks, but also to store the hydrogen onboard. Their findings were recently published in the ACS journal Energy and Fuels.
Researchers from the University of Toronto’s Faculty of Applied Science & Engineering and Fujitsu have applied quantum-inspired computing to find the promising, previously unexplored chemical family of Ru-Cr-Mn-Sb-O 2 as acidic oxygen evolution reaction catalysts for hydrogen production. A paper on their work appears in the journal Matter.
A team led by researchers from the University of California, Berkeley and Lawrence Berkeley National Laboratory has used metal–organic frameworks (MOFs) to set a new record for hydrogen storage capacity under normal operating conditions. Hydrogen-powered vehicles offer a cleaner alternative to fossil-fuel-based transportation.
Project Volt Gas Volt is based on a long-term financing plan and the use of existing technologies for the large-scale conversion of surplus renewable electricity to methane, with subsequent reuse. Project VGV uses surplus electricity generated by renewable and nuclear sources to produce hydrogen via electrolysis. Click to enlarge.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content