This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Audi’s e-gas plant. Audi has opened its e-gas plant in Werlte, making it the first automobile manufacturer to develop a chain of sustainable energy carriers. The Audi e-gas plant, which can convert 6MW of input power, utilizes renewable electricity for electrolysis to produce oxygen and hydrogen. Click to enlarge.
Researchers in Israel have designed a separate-cell photoelectrochemical (PEC) water-splitting system with decoupled hydrogen and oxygen cells for centralized hydrogen production. Photoelectrochemical Water Splitting Cell Architectures. (A) A paper describing their system is publishedin the journal Joule. —Landman et al.
thyssenkrupp’s proprietary water electrolysis technology for the production of. Operators can now link their plants to the German electricity market via E.ON’s virtual power plant. Operators can now link their plants to the German electricity market via E.ON’s virtual power plant. thyssenkrupp and E.ON
The Dutch Institute for Fundamental Energy Research ( DIFFER ) is partnering with Toyota Motor Europe (TME) to develop a device that absorbs water vapor, and splits it into hydrogen and oxygen directly using solar energy. One of these sustainable fuels is hydrogen, which can be used to store renewable energy. —Mihalis Tsampas.
A methanation plant expansion to the existing power-to-gas (PtG) facility in Falkenhagen, Germany has officially opened as part of the international €28-million (US$33.5-million) million) STORE&GO research project. Moreover, it provides for unrestricted use of the natural gas infrastructure, including for transport and storage.
H2One is an integrated system that provides stable CO 2 -free, environmentally-friendly electric power for the tower. H2One allows for maximum use of the solar power system by converting and storing unstable solar power, which varies depending on the time of day and weather, into hydrogen, and supplies it as electric power on demand.
Southern California Gas Co. The green hydrogen produced by this new technology can be used for clean transportation or industrial applications or blended with natural gas. Green hydrogen offers the ability to store renewable electricity across months and seasons, an advantage over battery storage.
The technology group Wärtsilä is developing the combustion process in its gas engines to enable them to burn 100% hydrogen fuel. Wärtsilä has researched hydrogen as a fuel for 20 years, and has tested its engines with blends of up to 60% hydrogen and 40% natural gas. Hydrogen as part of the renewable electricity system of the future.
A 14 kW, 220 N·m electric motor is positioned between the engine and the automatic transmission. On overrun or when the bus is braking, the energy recovery phase, the motor acts as a generator to produce electric power, which is briefly stored by the Citaro hybrid in capacitors. Mercedes-Benz calls this the support phase.
Conceptual design of a water-based flow battery GE scientists are researching as part of ARPA-E’s RANGE program. This battery could be one-fourth the cost of current car batteries, and could nearly triple the distance electric vehicles could travel on a single charge. Click to enlarge.
The hydrogen gas used in the direct reduction process is produced by electrolysis of water with fossil-free electricity, and can be used directly or stored for later use. We’ll be converting to electric arc furnace in Oxelösund as early as 2025.
Japan’s New Energy and Industrial Technology Development Organization (NEDO), Toshiba Energy Systems & Solutions Corporation (Toshiba ESS), Tohoku Electric Power Co., With sights set on expanding the use of renewable energy, Toshiba ESS, Tohoku Electric Power Co., Tohoku Electric Power Co., Overview of FH2R system.
These relate to electrolysis systems for producing hydrogen, both on land and in offshore wind parks, equipment for producing methane, the use of gas engines in cars, ships and CHP plants, and concepts for energy systems that efficiently couple the transport, electrical power, gas and heating sectors.
The M-Series units are methanol reformers that use water plus methanol to make hydrogen. The units uses two input streams (methanol/water mix and combustion air) and produces two output streams (product H 2 and combustion exhaust). Source: e1. —Dave Edlund, e1 CEO.
Electricity sourced from sun and wind is used to split water into hydrogen and oxygen in a process called electrolysis. The hydrogen is stored and can be converted by fuel cells in vehicles back into electricity that powers them. We additionally want to supply electricity, gas and heat to industry.
The prototype will use ammonia to deliver 200kg of hydrogen a day—enough to power around 5-10 hydrogen fuel cell-electric buses. We have just 13 years to deliver a net-zero electricity grid for the UK. It can be used for storing large amounts of hydrogen in a liquid form that builds on existing global supply chain infrastructure.
Audi A3 TCNG for e-gas project. Starting in 2013, Audi will begin series production of TCNG models whose engines—derived from TFSI units—will be powered by e-gas: synthetic methane produced via the methanation of hydrogen produced by electrolysis using renewable electricity. Click to enlarge.
Current Bloom Energy Servers generate electricity using natural gas or biogas as fuel. Despite those periods of excess wind and solar power, because the ability to storeelectricity for more than a few hours is lacking, dispatchable power from the combustion of fossil fuels continues to bridge gaps in supply.
for a “Power-to-Gas” project in Germany. The 2 MW energy storage facility, to be located in Falkenhagen in northeast Germany, will use surplus renewable energy sources to produce hydrogen for storage in the country’s existing natural gas pipeline network. Electrolysis company Hydrogenics Corporation has received an order from E.ON
While there is global potential to generate renewable energy at costs already competitive with fossil fuels, a means of storing and transporting this energy at a very large scale is a roadblock to large-scale investment, development and deployment. of global greenhouse gas emissions (or about 1.4% —MacFarlane et al. Generation 1.
Energy Vault’s advanced gravity energy storage solutions are based on the proven physics and mechanical engineering fundamentals of pumped hydroelectric energy storage, but replace water with custom-made composite blocks, or “mobile masses”, which do not lose storage capacity over time.
Bioscience engineers at KU Leuven have created a solar panel that produces hydrogen gas from moisture in the air. Twenty of these solar panels could provide electricity and heat for one family for an entire winter. A traditional solar panel converts between 18 to 20% of the solar energy into electricity.
Up to £40,000 (US$62,160) was made available to cover parts of the costs of developing a detailed feasibility study for a 1MW power-to-gas facility to be built in the UK starting in the second half of 2013. CNG Services are supporting the Project in relation to site selection and engineering, especially with regard to gas grid injection.
Fraunhofer’s POWERPASTE releases hydrogen on contact with water. Hydrogen is not currently an option for small vehicles such as electric scooters and motorcycles, since the pressure surge during refilling would be too great. Only half of the hydrogen originates from the POWERPASTE; the rest comes from the added water.
RMIT University (Australia) researchers have developed a concept battery based on storing protons produced by splitting water—a reversible fuel cell with integrated solid proton storage electrode. As only an inflow of water is needed in the charge mode, and air in discharge mode, the system is called a “proton flow battery”.
Steam is adopted as a sweep gas, presenting efficient H 2 recovery (>91%) while replacing conventionally utilized noble carrier gases that require additional gas separation processes. Hydrogen gas, however, cannot be transported in large amounts due to the limitations in the amount that can be stored per unit volume.
With Highview Power’s liquid air energy storage solution, excess or off-peak electricity is used to clean and compress air which is then stored in liquid form in insulated tanks at temperatures approaching -320 ?F
A research team at the University of Wisconsin–Madison has identified a new way to convert ammonia to nitrogen gas through a process that could be a step toward ammonia replacing carbon-based fuels. This process can be harnessed to produce electricity, with protons and nitrogen gas as byproducts.
FLECCS project teams will work to develop carbon capture and storage (CCS) processes that better enable technologies, such as natural gas power generators, to be responsive to grid conditions in a high variable renewable energy (VRE) penetration environment. Phase 1 FLECCS projects are: GE Global Research. 8 Rivers Capital. 8 Rivers Capital.
While such systems enable the supply of onsite hydrogen for industry, they also enable approaches such as “power-to-gas” and hydrogen mobility, the company said. The generator, which produces hydrogen through the electrolysis of water, is manufactured by McPhy Italy and powered by 60 kW of electricity from the local electrical grid.
The pilot plant has a direct reduction shaft, where the reduction takes place, and a number of electrolyzers for the production of hydrogen using fossil-free electricity. This marks the first time that iron ore has been directly reduced with hydrogen produced with fossil-free electricity on a pilot scale.
Tesla has officially opened its first store and showroom in Qatar, after the automaker initially launched sales in the country late last year. The new Tesla store was announced by Delivery Operations Supervisor Momo Elmegrahi in a LinkedIn post on Friday, along with photos of the site. The project cost around $2.7
a pioneer in natural gas decarbonization, recently raised $11.5 When renewable natural gas is used as the feedstock, C-Zero’s technology can even be carbon negative, effectively extracting carbon dioxide from the atmosphere and permanently storing it in the form of high-density solid carbon. C-Zero Inc.,
Toyota’s FPEG features a hollow step-shaped piston, combustion chamber and gas spring chamber. Toyota envisions that a pair of such units (20 kW) would enable B/C-segment electric drive vehicles to cruise at 120 km/h (75 mph). The FPEG consists of a two-stroke combustion chamber, a linear generator and a gas spring chamber.
Using a new metric—“Energy Stored on Invested, ESOI”—they concluded that batteries were the worst performers, while compressed air energy storage (CAES) performed the best, followed by pumped hydro storage (PHS). The Stanford study considered a future US grid where up to 80% of the electricity comes from renewables.
These fuel cell generators could ultimately replace gas- and diesel-burning generators with fewer emissions at worksites, buildings, movie sets, data centers, outdoor concerts and festivals. They could also back up or temporarily replace grid-sourced electricity for residential and small commercial enterprises at times of power disruption.
Quinones are naturally abundant, inexpensive, small organic molecules, and similar to molecules that store energy in plants and animals. The technology could fundamentally transform the way electricity is stored on the grid, making power from renewable energy sources such as wind and sun far more economical and reliable.
Evonik and Siemens Energy commissioned a pilot plant—sponsored by the German Federal Ministry of Education and Research (BMBF)—that uses carbon dioxide and water to produce chemicals. The necessary energy is supplied by electricity from renewable sources. The pilot plant is located in Marl, in the northern Ruhr area.
Electromobility is just now picking up momentum; further, electric cars are only as emissions-free as the production of electricity that charges their batteries. First, apply electricity generated from renewable sources to obtain hydrogen from water. to make synthetic gasoline, diesel, gas, or kerosene. to US$5.84
Sandia National Laboratories researchers recently delivered electricity produced by a new power-generating system to the Sandia-Kirtland Air Force Base electrical grid. The system uses heated supercritical carbon dioxide instead of steam to generate electricity and is based on a closed-loop Brayton cycle.
Decarbonizing the economy to reduce greenhouse gas (GHG) emissions is one of the company’s priorities. In addition to having access to Québec’s vast water resources to generate green, renewable power at competitive prices, Hydro-Québec has everything it needs to support the development of green hydrogen. Renewable natural gas.
Scaling up the production of what we call green hydrogen is a priority for researchers around the world because it offers a carbon-free way to storeelectricity from any source. Nearly all commercial hydrogen is produced from natural gas. —Ted Sargent, senior author.
Panasonic Corporation and Tokyo Gas Co., The new units will be sold by Tokyo Gas from 1 April 2014. The product is the first commercialized fuel cell system in which the fuel cell unit, hot water unit and backup heat source unit can all be stored in the pipe shaft of the condominium. Water tank capacity.
Volkswagen will produce the high-efficiency EcoBlue CHP (combined heat and power) plant, which is to be driven by natural gas engines from Volkswagen. The EcoBlue units consist of a natural gas engine that powers a generator; the exhaust gas is used for the heating component. Christian Friege.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content